...
首页> 外文期刊>Journal of Comparative Physiology, B. Biochemical, Systemic, and Environmental Physiology >Morphometry and estimated bulk oxygen diffusion in larvae of Xenopuslaevis under chronic carbon monoxide exposure
【24h】

Morphometry and estimated bulk oxygen diffusion in larvae of Xenopuslaevis under chronic carbon monoxide exposure

机译:慢性一氧化碳暴露下非洲爪蟾幼虫的形态学特征和估计的总氧扩散

获取原文
获取原文并翻译 | 示例
           

摘要

To understand the mechanisms that allow tadpoles of the African clawed frog Xenopus laevis to develop under conditions of impaired convective transport (hemoglobin poisoning with carbon monoxide), whole animal surface area and volume were measured and bulk oxygen diffusion was modeled at four developmental stages (from initiation of heartbeat to premetamorphic climax). Surface area [8.5 mm(2) at stages Nieuwkoop-Faber (NF) 33-34 to 70.2 mm(2) at stages NF 50-51] and volume (1.8 mm(3) at stages NF 33-34 to 35.7 mm(3) at stages NF 50-51) measured from volumetric analysis from dual plane images of each animal were not significantly different between treatments. Bulk oxygen radial diffusion was estimated by modeling the larvae as a set of adjacent cylinders with different radii. The model was used to predict the oxygen tension at the water-skin interface at which the oxygen tension in the center of the animal is nil (0.7 kPa at stage NF 33-34 and 14.0 kPa at stage NF 50-51), suggesting that bulk oxygen diffusion is sufficient to meet the metabolic demand up to stages NF 46-47 irrespective of the oxygen tension at the water-skin interface. At NF 50-51 an anoxic core in the animal would appear if bulk oxygen diffusion were the only means of oxygen transport at oxygen tensions below 15 kPa. However, the relative volume of the anoxic core would only exceed 10% of the total volume of the animal only at oxygen tensions below 5 kPa, Therefore, the ten-fold increase in mass between NF 50-51 and metamorphosis would prove insufficient for embryonic oxygen requirements via simple diffusion, and therefore would require additional transport mechanisms.
机译:为了了解使非洲爪蛙Xenopus laevis的t在对流运输受损(血红蛋白一氧化碳中毒)的条件下发育的机制,测量了整个动物的表面积和体积,并在四个发育阶段对大量氧气的扩散进行了建模(从引发心跳达到变形前的高潮)。表面积[在Nieuwkoop-Faber(NF)33-34到70.2 mm(2)阶段在NF 50-51阶段]和体积(NF在33-34到35.7 mm阶段的1.8 mm(3)(8.5毫米(2)) 3)在每只动物的双平面图像的体积分析中测得的阶段NF 50-51)在处理之间无显着差异。通过将幼虫建模为一组具有不同半径的相邻圆柱体,可以估算大量氧气的径向扩散。该模型用于预测水-皮肤界面处的氧气张力,此时动物中心的氧气张力为零(NF 33-34阶段为0.7 kPa,NF 50-51阶段为14.0 kPa),这表明不管水-皮肤界面处的氧气张力如何,大量的氧气扩散足以满足NF 46-47阶段的代谢需求。如果在低于15 kPa的氧气压力下大量的氧气扩散是唯一的氧气传输方式,则在NF 50-51处将出现动物缺氧核心。然而,仅在低于5 kPa的氧气张力下,缺氧核心的相对体积才会超过动物总体积的10%,因此,NF 50-51和变质之间质量的十倍增长将证明不足以用于胚胎通过简单的扩散需要氧气,因此将需要其他运输机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号