...
首页> 外文期刊>Journal of Computational Physics >A composite grid solver for conjugate heat transfer in fluid-structure systems
【24h】

A composite grid solver for conjugate heat transfer in fluid-structure systems

机译:用于流体结构系统中共轭传热的复合网格求解器

获取原文
获取原文并翻译 | 示例
           

摘要

We describe a numerical method for modeling temperature-dependent fluid flow coupled to heat transfer in solids. This approach to conjugate heat transfer can be used to compute transient and steady state solutions to a wide range of fluid-solid systems in complex two- and three-dimensional geometry. Fluids are modeled with the temperature-dependent incompressible Navier-Stokes equations using the Boussinesq approximation. Solids with heat transfer are modeled with the heat equation. Appropriate interface equations are applied to couple the solutions across different domains. The computational region is divided into a number of sub-domains corresponding to fluid domains and solid domains. There may be multiple fluid domains and multiple solid domains. Each fluid or solid sub-domain is discretized with an overlapping grid. The entire region is associated with a composite grid which is the union of the overlapping grids for the sub-domains. A different physics solver (fluid solver or solid solver) is associated with each sub-domain. A higher-level multi-domain solver manages the entire solution process. We propose and analyze some centered discrete approximations to the interface equations that have some desirable stability properties. The coupled interface equations may be solved directly when using explicit time-stepping methods in the sub-domains, resulting in a strongly coupled approach. The stability of the interface treatment in this case is independent of the relative sizes of the material properties in the two domains with the time-step only depending on the usual von Neumann conditions for each sub-domain. For implicit time-stepping methods we solve the interface equations in a weakly coupled fashion to avoid forming a coupled implicit system across all sub-domains. The convergence of this approach does depend on the relative sizes of the thermal conductivities and diffusivities. We analyze different iteration strategies for solving these implicit equations including the use of mixed (Robin) approximations at the interface. Numerical results are presented to illustrate the method. The accuracy of the technique is verified using the method of analytic solutions and by computing the solution to some heat exchanger problems where the exact solution is known. The technique is also applied to the modeling of an inertial-confinement-fusion hohlraum target and the flow of coolant past an hexagonal array of heated fuel rods. The multi-domain solver runs in parallel on distributed memory computers and some parallel results are provided.
机译:我们描述了一种模拟与温度相关的流体流动并耦合到固体传热的数值方法。这种用于共轭传热的方法可用于计算复杂的二维和三维几何形状的各种流体-固体系统的瞬态和稳态解。使用Boussinesq逼近,使用与温度相关的不可压缩Navier-Stokes方程对流体进行建模。带有热传递的固体通过热方程建模。适当的接口方程式适用于跨不同领域耦合解决方案。计算区域被分为与流体域和固体域相对应的多个子域。可能存在多个流体域和多个固体域。每个流体或固体子域都通过重叠的网格离散化。整个区域与一个复合网格相关联,该复合网格是子域重叠网格的并集。每个子域都有一个不同的物理求解器(流体求解器或固体求解器)。更高级别的多域求解器可以管理整个解决方案过程。我们提出并分析了一些具有所需稳定性的界面方程的一些中心离散逼近。当在子域中使用显式的时间步长方法时,可以直接求解耦合的界面方程式,从而产生强耦合的方法。在这种情况下,界面处理的稳定性与两个域中材料属性的相对大小无关,时间步长仅取决于每个子域的常规冯·诺依曼条件。对于隐式时间步长方法,我们以弱耦合方式求解接口方程,以避免在所有子域上形成耦合隐式系统。这种方法的收敛性确实取决于热导率和扩散率的相对大小。我们分析了解决这些隐式方程的不同迭代策略,包括在界面处使用混合(罗宾)近似值。数值结果表明了该方法。使用解析解的方法并通过计算已知确切解的一些热交换器问题的解来验证该技术的准确性。该技术还适用于惯性约束融合大炮目标和冷却剂流过加热的燃料棒的六边形阵列的建模。多域求解器在分布式内存计算机上并行运行,并提供了一些并行结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号