...
首页> 外文期刊>Journal of Computational Physics >Towards adaptive kinetic-fluid simulations of weakly ionized plasmas
【24h】

Towards adaptive kinetic-fluid simulations of weakly ionized plasmas

机译:迈向弱电离等离子体的自适应动力学流体模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes an Adaptive Mesh and Algorithm Refinement (AMAR) methodology for multi-scale simulations of gas flows and the challenges associated with extending this methodology for simulations of weakly ionized plasmas. The AMAR method combines Adaptive Mesh Refinement (AMR) with automatic selection of kinetic or continuum solvers in different parts of computational domains. We first review the discrete velocity method for solving Boltzmann and Wang Chang-Uhlenbeck kinetic equations for rarefied gases. Then, peculiarities of AMR implementation with octree Cartesian mesh are discussed. A Unified Flow Solver (UFS) uses AMAR method with adaptive Cartesian mesh to dynamically introduce kinetic patches for multi-scale simulations of gas flows. We describe fluid plasma models with AMR capabilities and illustrate how physical models affect simulation results for gas discharges, especially in the areas where electron kinetics plays an important role. We introduce Eulerian solvers for plasma kinetic equations and illustrate the concept of adaptive mesh in velocity space. Specifics of electron kinetics in collisional plasmas are described focusing on deterministic methods of solving kinetic equations for electrons under different conditions. We illustrate the appearance of distinct groups of electrons in the cathode region of DC discharges and discuss the physical models appropriate for each group. These kinetic models are currently being incorporated into AMAR methodology for multi-scale plasma simulations.
机译:本文介绍了一种用于气流多尺度模拟的自适应网格和算法优化(AMAR)方法,以及与扩展该方法用于弱电离等离子体的模拟相关的挑战。 AMAR方法将自适应网格细化(AMR)与在计算域的不同部分中自动选择动力学或连续体求解器结合在一起。我们首先回顾用于求解稀有气体的Boltzmann和Wang Chang-Uhlenbeck动力学方程的离散速度方法。然后,讨论了八叉树笛卡尔网格的AMR实现的特点。统一流量求解器(UFS)使用AMAR方法和自适应笛卡尔网格来动态引入动力学补丁,以进行多尺度气流模拟。我们将介绍具有AMR功能的流体等离子体模型,并说明物理模型如何影响气体放电的模拟结果,尤其是在电子动力学起重要作用的领域。我们介绍了等离子体动力学方程的欧拉解算器,并说明了速度空间中自适应网格的概念。描述碰撞等离子体中电子动力学的细节,着重于解决在不同条件下的电子动力学方程的确定性方法。我们说明了DC放电阴极区域中不同组电子的出现,并讨论了适用于每组电子的物理模型。这些动力学模型目前已被纳入AMAR方法学中,用于多尺度等离子体模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号