...
首页> 外文期刊>Journal of Computational Physics >A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability
【24h】

A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability

机译:一种有效的可压缩多流体模拟的解决方案自适应方法,应用于Richtmyer-Meshkov不稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution of high-speed initially laminar multicomponent flows into a turbulent multi-material mixing entity, e.g., in the Richtmyer-Meshkov instability, poses significant challenges for high-fidelity numerical simulations. Although high-order shock- and interface-capturing schemes represent such flows well at early times, the excessive numerical dissipation thereby introduced and the resulting computational cost prevent the resolution of small-scale features. Furthermore, unless special care is taken, shock-capturing schemes generate spurious pressure oscillations at material interfaces where the specific heats ratio varies. To remedy these problems, a solution-adaptive high-order central/shock-capturing finite difference scheme is presented for efficient computations of compressible multi-material flows, including turbulence. A new discontinuity sensor discriminates between smooth and discontinuous regions. The appropriate split form of (energy preserving) central schemes is derived for flows of smoothly varying specific heats ratio, such that spurious pressure oscillations are prevented. High-order accurate weighted essentially non-oscillatory (WENO) schemes are applied only at discontinuities; the standard approach is followed for shocks and contacts, but material discontinuities are treated by interpolating the primitive variables. The hybrid nature of the method allows for efficient and accurate computations of shocks and broadband motions, and is shown to prevent pressure oscillations for varying specific heats ratios. The method is assessed through one-dimensional problems with shocks, sharp interfaces and smooth distributions of specific heats ratio, and the two-dimensional single-mode inviscid and viscous Richtmyer-Meshkov instability with re-shock.
机译:高速最初的层流多组分的发展演变成湍流的多材料混合实体,例如在Richtmyer-Meshkov不稳定性中,对高保真数值模拟提出了重大挑战。尽管高阶冲击捕获和接口捕获方案在早期就很好地表示了此类流,但是由此引入了过多的数值耗散,并且由此产生的计算成本阻止了小尺度特征的解析。此外,除非特别注意,否则震动捕获方案会在比热比变化的材料界面处产生虚假的压力振荡。为了解决这些问题,提出了一种解决方案自适应的高阶中心/震荡捕获有限差分方案,用于有效计算包括湍流在内的可压缩多材料流。一个新的不连续传感器可以区分平滑区域和不连续区域。对于平稳变化的比热比,导出了(节能)中心方案的适当拆分形式,从而防止了杂散压力振荡。高阶精确加权基本非振荡(WENO)方案仅适用于不连续性;对于冲击和接触,遵循标准方法,但是通过内插原始变量来处理材料间断。该方法的混合性质允许对冲击和宽带运动进行有效而准确的计算,并显示出可防止因比热比变化而引起的压力振荡。通过具有冲击,尖锐的界面和比热比的平滑分布的一维问题,以及具有重新电击的二维单模无粘性和粘性Richtmyer-Meshkov不稳定性来评估该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号