...
首页> 外文期刊>Journal of Cosmology and Astroparticle Physics >Warm dark matter via ultra-violet freeze-in: reheating temperature and non-thermal distribution for fermionic Higgs portal dark matter
【24h】

Warm dark matter via ultra-violet freeze-in: reheating temperature and non-thermal distribution for fermionic Higgs portal dark matter

机译:通过紫外线冻结产生温暖的暗物质:铁离子希格斯门式暗物质的再加热温度和非热分布

获取原文
获取原文并翻译 | 示例
           

摘要

Warm dark matter (WDM) of order keV mass may be able to resolve the disagreement between structure formation in cold dark matter simulations and observations. The detailed properties of WDM will depend upon its energy distribution, in particular how it deviates from the thermal distribution usually assumed in WDM simulations. Here we focus on WDM production via the Ultra Violet (UV) freeze-in mechanism, for the case of fermionic Higgs portal dark matter psi produced via the portal interaction (psi) over bar psi(HH)-H-dagger/Lambda. We introduce a new method to simplify the computation of the non-thermal energy distribution of (lark matter from freeze-in. We show that the non-thermal energy distribution from UV freeze-in is hotter than the corresponding thermal distribution and has the form of a Bose-Finstein distribution with a non-thermal normalization. The resulting range of dark matter fermion mass consistent with observations is 5-7 keV. The reheating temperature must satisfy T-R greater than or similar to 120 GeV in order to account for the observed dark matter density when in 5 keV, where the lower bound on T-R corresponds to the limit where the fermion mass is entirely due to electroweak symmetry breaking via, the portal interaction. The corresponding bound on the interaction scale is Lambda greater than or similar to 6.0 x 10(9) GeV.
机译:keV级质量的温暖暗物质(WDM)可能能够解决冷暗物质模拟和观测中结构形成之间的分歧。 WDM的详细属性将取决于其能量分布,特别是其与WDM模拟中通常假定的热分布的偏离程度。在这里,我们重点关注通过紫外线(UV)冻结机制进行WDM生产的情况,对于通过bar psi(HH)-H-dagger / Lambda上的门相互作用(psi)产生的铁离子希格斯门暗物质psi。我们引入了一种新的方法来简化(冻结产生的云雀物质)非热能分布的计算。我们证明了UV冻结产生的非热能分布比相应的热分布更热,并且具有非热归一化的玻色-芬斯坦分布的结果,与观测值一致的暗物质费米子质量的范围为5-7 keV。再加热温度必须满足大于或等于120 GeV的TR才能解决观测到的问题在5 keV时的暗物质密度,其中TR的下限对应于极限,在该极限下,费米子质量完全是由于电弱对称性通过门相互作用而破坏,在相互作用尺度上的对应界为Lambda大于或类似于6.0 x 10(9)GeV。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号