...
首页> 外文期刊>Journal of Geophysical Research, C. Oceans: JGR >A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data
【24h】

A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data

机译:多层sigma坐标热力学海冰模型:针对北冰洋(SHEBA)/海冰模型比较项目第2部分(SIMIP2)数据的验证

获取原文
获取原文并翻译 | 示例
           

摘要

A new multilayer sigma-coordinate thermodynamic sea ice model is presented. The model employs a coordinate transformation which maps the thickness of the snow and ice slabs onto unity intervals and thus enables automatic relayering when the snow or ice thickness changes. This is done through an advection term which naturally appears in the transformed energy equation. Unlike previous approaches, the model conserves the total energy per layer (Jm?2 as opposed to Jm?3), which takes into account the changes in internal energy associated with thickness changes. This model was then tested against observational data from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment in the context of the Sea Ice Model Intercomparison Project, Part 2, Thermodynamics (SIMIP2). In general, the model reproduces the observed internal snow-ice temperature and the ice thickness evolution very well. Results show that the ice thickness evolution is very sensitive to the ocean heat flux (F ocn) and the thickness of the snow cover in winter. Given that the spatial variability in snow depth at small scale is large, the specification of the snow depth temporal evolution is crucial for an intercomparison project. Since F ocn in SIMIP2 is calculated as a residual of the observed basal growth rates and heat conduction, the salinity of newly formed ice used in the simulations must be consistent with that used to derive F ocn. Simulated and observed snow surface and snow-ice interface temperatures suggest that not enough heat is conducted through the snow layer even when using a snow thermal conductivity as large as 0.50 Wm?1 K?1 (value derived from observed snow and ice internal temperature profiles). A surface energy budget of simulated and observed energy fluxes confirms this finding.
机译:提出了一种新的多层西格玛坐标热力学海冰模型。该模型采用坐标变换,可将雪和冰板的厚度映射到统一的间隔,从而在雪或冰的厚度变化时能够自动中继。这是通过平流项完成的,该对流项自然出现在变换后的能量方程中。与以前的方法不同,该模型保留了每层总能量(Jm?2,而不是Jm?3),其中考虑了与厚度变化相关的内部能量的变化。然后,在海冰模型比较项目,第2部分,热力学(SIMIP2)的背景下,根据北冰洋表面热收支(SHEBA)实验的观测数据测试了该模型。通常,该模型很好地再现了观测到的内部冰雪温度和冰厚演变。结果表明,冰的厚度演变对海洋热通量(F ocn)和冬季积雪的厚度非常敏感。鉴于小范围积雪深度的空间变异性很大,积雪深度时间演变的规范对于一个比对项目至关重要。由于SIMIP2中的F ocn是作为观察到的基础生长速率和热传导的残差计算的,因此在模拟中使用的新形成冰的盐度必须与用于导出F ocn的盐度一致。模拟和观察到的雪表面和雪冰界面温度表明,即使使用高达0.50 Wm?1 K?1的雪热导率(从观察到的冰雪内部温度分布得出的值),也无法通过雪层传导足够的热量。 )。模拟和观察到的能量通量的表面能收支证实了这一发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号