...
首页> 外文期刊>Journal of Geophysical Research, C. Oceans: JGR >SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes
【24h】

SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes

机译:SMOS卫星L波段辐射仪:飓风中海洋表面遥感的新功能

获取原文
获取原文并翻译 | 示例
           

摘要

The Soil Moisture and Ocean Salinity (SMOS) mission currently provides multiangular L-band (1.4 GHz) brightness temperature images of the Earth. Because upwelling radiation at 1.4 GHz is significantly less affected by rain and atmospheric effects than at higher microwave frequencies, these new SMOS measurements offer unique opportunities to complement existing ocean satellite high wind observations that are often contaminated by heavy rain and clouds. To illustrate this new capability, we present SMOS data over hurricane Igor, a tropical storm that developed to a Saffir-Simpson category 4 hurricane from 11 to 19 September 2010. Thanks to its large spatial swath and frequent revisit time, SMOS observations intercepted the hurricane 9 times during this period. Without correcting for rain effects, L-band wind-induced ocean surface brightness temperatures (T_B) were co-located and compared to H~*Wind analysis. We find the L-band ocean emissivity dependence with wind speed appears less sensitive to roughness and foam changes than at the higher C-band microwave frequencies. The first Stokes parameter on a ~50 km spatial scale nevertheless increases quasi-linearly with increasing surface wind speed at a rate of 0.3 Kim s~(-1) and 0.7 Kim s~(-1) below and above the hurricane-force wind speed threshold (~32 m s~(-1)), respectively. Surface wind speeds estimated from SMOS brightness temperature images agree well with the observed and modeled surface wind speed features. In particular, the evolution of the maximum surface wind speed and the radii of 34, 50 and 64 knots surface wind speeds are consistent with GFDL hurricane model solutions and H~*Wind analyses. The SMOS sensor is thus closer to a true all-weather satellite ocean wind sensor with the capability to provide quantitative and complementary surface wind information of interest for operational Hurricane intensity forecasts.
机译:目前,土壤水分和海洋盐度(SMOS)任务提供了地球的多角度L波段(1.4 GHz)亮度温度图像。由于在1.4 GHz处的上升流辐射受雨水和大气影响的影响远比在较高微波频率下受到的影响小,因此这些新的SMOS测量提供了独特的机会来补充现有的经常被大雨和云污染的海洋卫星强风观测。为了说明这一新功能,我们提供了Sgor数据,涉及Igor飓风,这是一场热带风暴,于2010年9月11日至19日发展为Saffir-Simpson 4级飓风。由于其较大的空间范围和频繁的重访时间,SMOS的观测结果拦截了飓风在此期间9次。在不校正降雨影响的情况下,将L波段风引起的海洋表面亮度温度(T_B)置于同一位置,并与H〜* Wind分析进行比较。我们发现,与较高的C波段微波频率相比,L波段与风速的海洋辐射率相关性似乎对粗糙度和泡沫变化的敏感性较低。然而,在〜50 km空间尺度上的第一个斯托克斯参数随着表面风速的增加而近似线性地增加,在飓风风的上下分别为0.3 Kim s〜(-1)和0.7 Kim s〜(-1)速度阈值(〜32 ms〜(-1))。根据SMOS亮度温度图像估算的地表风速与观测和建模的地表风速特征非常吻合。特别是,最大表面风速的演变以及34、50和64节海面半径的半径与GFDL飓风模型解和H〜* Wind分析一致。因此,SMOS传感器更接近于真正的全天候卫星海洋风传感器,具有为运行飓风强度预报提供感兴趣的定量和互补性地面风信息的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号