...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Heat and fluid flow in contact metamorphic aureoles with layered and transient permeability, with application to the Notch Peak aureole, Utah
【24h】

Heat and fluid flow in contact metamorphic aureoles with layered and transient permeability, with application to the Notch Peak aureole, Utah

机译:具有层状和瞬态渗透性的接触变质金油中的热和流体流动,应用于犹他州的Notch Peak金油中

获取原文
获取原文并翻译 | 示例
           

摘要

We have investigated the control of layered and transient permeability structures on fluid flow and thermal evolution in contact metamorphic aureoles using two-dimensional numerical modeling with petrological and geochemical constraints from the Notch Peak aureole, Utah. The model includes interbedded aquitard and aquifer lithologies on the scale of formations and transient enhancement of permeability due to devolatilization reactions. The results show that a layered permeability structure causes focusing of fluids into aquifer layers, resulting in flow pattern that is strongly time-dependent and significantly different from the predicted simple convection cells in aureoles with homogeneous permeability. The model predicts temporal development of three distinctive flow regimes: (1) early radial down-temperature flow due to release of magmatic fluid, (2) small flat convection cells near the pluton-aquifer contacts during peak metamorphism, (3) late unidirectional down-temperature flow in the upper aureole and up temperature flow in the middle to lower aureole. When the bulk permeability of host rocks is >10(-16) m(2), heat advection by flowing fluids is significant. At lower bulk permeability, heat conduction dominates, and the effects of detailed permeability structure on the thermal field become negligible. Metamorphic reactions enhance permeability within the inner aureole, localizing fluid convection and increasing fluid flux. The observed spatial distribution of mineral assemblages and oxygen isotopic shifts in the upper part of the Notch Peak aureole is consistent with the predicted time-integrated fluid flux, which over duration of metamorphism is dominated by the down-temperature flow of a large amount of water from the pluton into the wall rocks. [References: 62]
机译:我们使用二维数值建模方法研究了岩石和地球化学约束条件下来自犹他州Notch Peak aureole的层状和瞬态渗透结构对流体在接触变质金相中流动和热演化的控制作用。该模型在地层规模上包括层状的阿奎塔尔岩和含水层岩性以及由于脱挥发分反应而引起的渗透率的瞬时增强。结果表明,分层的渗透性结构导致流体集中到含水层中,从而导致流动模式具有强烈的时间依赖性,并且与具有均质渗透性的金相中的预测简单对流单元明显不同。该模型预测了三种独特的流态的时间发展:(1)由于岩浆流体的释放而引起的早期径向向下的温度流动;(2)在峰变质期间靠近the-含水层接触面的小型平面对流单元;(3)晚期单向下降-高温在上部金黄色的流中和高温在中下部金黄色的流中。当主体岩石的体渗透率> 10(-16)m(2)时,流动流体产生的热对流很明显。在较低的体磁导率下,导热占主导地位,详细的磁导率结构对热场的影响可忽略不计。变质反应增强了内部金黄色素的渗透性,使流体对流局部化并增加了流体通量。在Notch Peak极光区上部观察到的矿物组合和氧同位素位移的空间分布与预测的时间积分流体通量相一致,在变质作用期间,该通量主要由大量水的低温流控制。从岩体到围岩。 [参考:62]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号