...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Large eddy simulations of continental shallow cumulus convection - art. no. 4453
【24h】

Large eddy simulations of continental shallow cumulus convection - art. no. 4453

机译:大陆浅积云对流的大涡模拟-艺术。没有。 4453

获取原文
获取原文并翻译 | 示例
           

摘要

1] This paper addresses the basic physics underlying continental fair-weather cumuli (FWC) and issues associated with the evolution of these clouds in response to the changes in external forcings and ambient meteorological conditions. To achieve the main objectives of this study, one FWC case observed from the Atmospheric Radiation Measurement ( ARM) project at the southern Great Plains (SGP) site is simulated by a series of large-eddy simulation (LES) experiments. For FWC forced by a strong buoyant convection due to large surface buoyancy fluxes, the mixed layer (ML) is usually associated with a moisture flux divergence in the vertical caused by the moisture discontinuity across the top of the convective boundary layer (CBL). Such a divergence is intimately related to cumulus initiation and development since it transports a large amount of moisture to an area above the mean ML where the forced FWC form and develop. The initiation of continental forced FWC results from thermal penetrations into the stable layer above. An important application of the penetration theory is to predict cumulus initiation. On the basis of the LES data, the authors developed a simple scheme that can be used to diagnose cumulus initiation using the variables that may be provided by largescale models, such as the Deardorff convective velocity scale, the mean ML height, the surface layer relative humidity, and the strength of the inversion. Unlike active marine shallow cumuli, the FWC focused on in this study are forced cumuli mainly supported by the buoyancy production in the ML. However, the simulations indicate that these clouds can have a significant impact on the turbulence intensity and transport in the CBL. Through sensitivity tests, the authors also studied the influence of the surface sensible and latent heat fluxes, the stratification above the CBL, the moisture difference across the top of the CBL, and the horizontal winds on the development of FWC and cloud radiative properties. [References: 56
机译:[1]本文讨论了大陆性晴天积云(FWC)的基本物理原理,以及与这些云层对外部强迫和周围气象条件变化的响应有关的问题。为了实现本研究的主要目标,通过一系列大涡模拟(LES)实验模拟了从大平原地区(SGP)南部的大气辐射测量(ARM)项目中观察到的FWC案例。对于由于较大的表面浮力通量而由强浮力对流迫使的FWC,混合层(ML)通常与垂直方向上的水分通量发散有关,这是由于穿过对流边界层(CBL)顶部的水分不连续性引起的。这种发散与积云的形成和发育密切相关,因为它会将大量的水分输送到平均ML上方的区域,强迫FWC在那里形成并发育。大陆强迫FWC的起因是热渗透到上方稳定层中。渗透理论的重要应用是预测积云的形成。基于LES数据,作者开发了一种简单的方案,该方案可使用大型模型可能提供的变量(例如Deardorff对流速度尺度,平均ML高度,表面层相对值)来诊断积云形成。湿度和反转强度。与活跃的海洋浅层积云不同,本研究重点关注的FWC是强迫积云,主要由ML中的浮力产生支持。但是,仿真表明,这些云对CBL中的湍流强度和输运具有重大影响。通过敏感性测试,作者还研究了表面感热通量和潜热通量,CBL上方的分层,CBL顶部的水分差异以及水平风对FWC和云辐射特性发展的影响。 [参考:56

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号