...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Remote sensing data assimilation for a prognostic phenology model
【24h】

Remote sensing data assimilation for a prognostic phenology model

机译:遥感数据同化用于预后物候模型

获取原文
获取原文并翻译 | 示例
           

摘要

Predicting the global carbon and water cycle requires a realistic representation of vegetation phenology in climate models. However most prognostic phenology models are not yet suited for global applications, and diagnostic satellite data can be uncertain and lack predictive power. We present a framework for data assimilation of Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) and Leaf Area Index (LAI) from the MODerate Resolution Imaging Spectroradiometer (MODIS) to constrain empirical temperature, light, moisture and structural vegetation parameters of a prognostic phenology model. We find that data assimilation better constrains structural vegetation parameters than climate control parameters. Improvements are largest for drought-deciduous ecosystems where correlation of predicted versus satellite-observed FPAR and LAI increases from negative to 0.7–0.8. Data assimilation effectively overcomes the cloud- and aerosol-related deficiencies of satellite data sets in tropical areas. Validation with a 49-year-long phenology data set reveals that the temperature-driven start of season (SOS) is light limited in warm years. The model has substantial skill (R = 0.73) to reproduce SOS inter-annual and decadal variability. Predicted SOS shows a higher inter-annual variability with a negative bias of 5–20 days compared to species-level SOS. It is however accurate to within 1–2 days compared to SOS derived from net ecosystem exchange (NEE) measurements at a FLUXNET tower. The model only has weak skill to predict end of season (EOS). Use of remote sensing data assimilation for phenology model development is encouraged but validation should be extended with phenology data sets covering mediterranean, tropical and arctic ecosystems.
机译:预测全球碳和水循环需要在气候模型中真实反映植被物候。但是,大多数预后的物候模型尚不适合全球应用,并且诊断性卫星数据可能不确定且缺乏预测能力。我们提出了一个数据吸收同化分辨率成像光谱仪(MODIS)的植被吸收的光合有效辐射分数(FPAR)和叶面积指数(LAI)的数据,以约束经验性温度,光,湿度和结构性植被参数的预测物候模型。我们发现,数据同化比气候控制参数更好地约束了结构植被参数。干旱落叶生态系统的改善最大,预测的与卫星观测的FPAR和LAI的相关性从负值增加到0.7-0.8。数据同化有效地克服了热带地区卫星数据集与云和气溶胶有关的缺陷。使用长达49年的物候数据集进行的验证显示,温度驱动的季节的开始(SOS)在温暖的季节有限。该模型具有重现SOS年际和年代际变化的重要技能(R =​​ 0.73)。与物种水平的SOS相比,预测的SOS显示较高的年际变异性,负偏差为5-20天。但是,与从FLUXNET塔进行的净生态系统交换(NEE)测量得出的SOS相比,它的准确度为1-2天。该模型只具有较弱的预测季末(EOS)的技能。鼓励将遥感数据同化用于物候模型开发,但应使用涵盖地中海,热带和北极生态系统的物候数据集扩大验证范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号