...
首页> 外文期刊>Journal of industrial and engineering chemistry >Towards understanding the carbon catalyzed CO2 reforming of methane to syngas
【24h】

Towards understanding the carbon catalyzed CO2 reforming of methane to syngas

机译:理解碳的甲烷催化CO2重整为合成气

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a fixed-bed reactor is used to study the influence of different conditions on carbon catalyzed CO2-CH4 reforming. The surface structure and functional groups of carbonaceous material have been characterized through SEM, XPS, XRD, BET and chemical titration before and after the reaction. Studies have revealed that under non-catalytic condition, methane pyrolysis happens first, followed by the gasification reaction between CO2 and carbon deposit produced from the pyrolysis. While with carbonaceous material, CO2 gasification, methane pyrolysis and CO2-CH4 reforming can take place at the same time, with the reforming as the main reaction, CO2 gasification and methane pyrolysis as the side reaction. Catalytic activity varies from one carbonaceous material to another, but their reaction trend is the same on the whole. Those high specific surface area carbonaceous materials show higher catalytic activity. The increase in reaction temperature and residence time of the reforming can improve the conversion of reactant gas. Adjusting the partial pressure of methane can control carbon-hydrogen ratio of the synthesis gas. XPS and XRD characterizations demonstrate that the structural ordering of carbonaceous materials becomes a little messier after the reforming reaction, and the number and content of oxygen functional groups decrease. That means these oxygen functional groups on the surface of carbonaceous materials are involved in the reforming and these groups along with pore structure on the surface are the major factors influencing the catalytic properties. Different oxygen species make the nature of electrical energy on the surface different; the catalytic activity depends on the polarity of oxygen from different species. Those whose polarity is strong have strong activity. The dipole force can be associated with methane in the form of hydrogen bond, so that the material can display strong activity. Those whose polarity is weak have weak activity, the catalytic activity is weak too. The results of chemical titration and XPS characterization show that the oxygen in the anhydride and lactone structures on the surface of carbonaceous materials are active oxygen, and which is the main active component, it can reduce the activation energy of methane dehydrogenation. (C) 2014 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
机译:本文使用固定床反应器研究不同条件对碳催化CO2-CH4重整的影响。反应前后,通过SEM,XPS,XRD,BET,化学滴定等方法对碳质材料的表面结构和官能团进行了表征。研究表明,在非催化条件下,甲烷首先发生热解,然后发生CO2与热解产生的碳沉积物之间的气化反应。对于含碳物质,可同时进行CO2气化,甲烷热解和CO2-CH4重整,重整为主要反应,CO2气化和甲烷热解为副反应。从一种碳质材料到另一种碳质材料,催化活性各不相同,但是它们的反应趋势总体上是相同的。那些高比表面积的碳质材料显示出更高的催化活性。反应温度和重整停留时间的增加可以提高反应气体的转化率。调节甲烷的分压可以控制合成气的碳氢比。 XPS和XRD表征表明,重整反应后碳质材料的结构排列变得杂乱无章,氧官能团的数量和含量减少。这意味着碳质材料表面的这些氧官能团参与重整,这些基团与表面的孔结构一起是影响催化性能的主要因素。不同的氧种类使表面上电能的性质不同。催化活性取决于不同物种的氧的极性。极性强的人有较强的活动能力。偶极力可以氢键的形式与甲烷缔合,因此该材料可以表现出强活性。极性弱的那些具有弱的活性,催化活性也弱。化学滴定和XPS表征结果表明,碳质材料表面酸酐和内酯结构中的氧为活性氧,是主要的活性成分,可降低甲烷脱氢的活化能。 (C)2014韩国工业和工程化学学会。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号