首页> 外文期刊>Journal of loss prevention in the process industries >Application of computational fluid dynamics for LNG vapor dispersion modeling: A study of key parameters
【24h】

Application of computational fluid dynamics for LNG vapor dispersion modeling: A study of key parameters

机译:计算流体动力学在LNG蒸汽扩散建模中的应用:关键参数研究

获取原文
获取原文并翻译 | 示例
           

摘要

The increased demand for Liquefied Natural Gas (LNG) has led to the construction of several new LNG terminals in the United States (US) and around the world. To ensure the safety of the public, consequence modeling is used to estimate exclusion distances. For LNG industry, the purpose of identifying these exclusion distances is to protect the public from being reached by flammable vapors during a release and they are determined by one-half of the Lower Flammability Limit (half LFL, 2.5% v/v). Since LNG vapors are heavier-than-air when released into atmosphere, it goes through several stages, which are respectively characterized as negative, neutral, and positively buoyant as it dilutes. To address this complex phenomenon, several simple models were developed and tested against large scale experimental data for the past three decades. This paper was derived from the development of design and safety specifications for LNG facilities based on experimental and theoretical research at Mary Kay O'Connor Process Safety Center (MKOPSC). Medium-scale LNG tests were performed at the Brayton Fire Training Field (BFTF), Texas A&M University to provide data for this specific research. Computational fluid dynamics (CFD) was used to perform consequence modeling for LNG release. The CFD code showed good agreement with the data collected during the November 2007 test performed at BFTF. This paper showed the simulation setup and the comparison with data collected for two scenarios: release on water and on dry concrete. Once the model was tuned against experimental data, it was used in a sensitivity analysis on parameters to assess the effects on the LFL distance and the concentration levels. Furthermore, three turbulence models were compared. The source term was composed of turbulence intensity at the source, LNG pool geometry, mass evaporation rate, and LNG pool area. The vapor dispersion parameters were wind velocity, sensible heat flux, and obstacles effects. It was concluded that at low wind velocity, the source term parameters strongly influenced the LFL distance and the concentration level. On the other hand, at high wind velocity, the source term parameter had a slight effect on the LFL distance and the concentration levels.
机译:对液化天然气(LNG)的需求不断增长,导致在美国(US)和世界各地建造了多个新的LNG接收站。为了确保公众的安全,后果模型用于估计排除距离。对于液化天然气行业,确定这些排斥距离的目的是为了保护公众在释放过程中不被易燃气体所接触,并且由下限下限的一半(LFL的一半,2.5%v / v)确定。由于LNG蒸气释放到大气中时比空气重,因此它经历了多个阶段,稀释时分别具有负,中性和正浮力的特征。为了解决这一复杂现象,在过去的三十年中,开发了几种简单的模型,并针对大规模的实验数据进行了测试。本文源自在玫琳凯·奥康纳过程安全中心(MKOPSC)进行的实验和理论研究基础上,对液化天然气设施的设计和安全规范的开发。在得克萨斯州A&M大学的布雷顿消防训练场(BFTF)进行了中型LNG测试,以提供这项特定研究的数据。计算流体动力学(CFD)用于执行LNG释放的后果模型。 CFD代码与2007年11月在BFTF进行的测试期间收集的数据显示出良好的一致性。本文展示了模拟设置并与两种情况下收集的数据进行了比较:在水和干燥混凝土上释放。一旦针对实验数据调整了模型,就将其用于参数的敏感性分析,以评估对LFL距离和浓度水平的影响。此外,比较了三种湍流模型。源项由源处的湍流强度,LNG池的几何形状,质量蒸发速率和LNG池面积组成。蒸气扩散参数是风速,显热通量和障碍物效应。结论是,在低风速下,源项参数对LFL距离和浓度水平有很大影响。另一方面,在高风速下,源项参数对LFL距离和浓度水平影响很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号