...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Black rutile (Sn, Ti)O-2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage
【24h】

Black rutile (Sn, Ti)O-2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage

机译:黑色金红石(Sn,Ti)O-2初始化嵌入无定形锂化二氧化钛基质中的电化学可逆Sn纳米点以有效地存储锂

获取原文
获取原文并翻译 | 示例
           

摘要

Binary oxides MO2 (M = Ti, Sn) are promising anode materials for Li-ion batteries, but they suffer from rather low capacities (TiO2: similar to 340 mA h g(-1)) and poor cycling stability (SnO2: <50 cycles). Here, the black (Sn, Ti)O-2 solid solution of a core-shell structure SnxTi1-xO2@SnxTi1-xO2-yHy is first designed to simultaneously harvest a large reversible capacity, high rate performance and superior cycling stability. The conductive amorphous shell of the new material obtained from hydrogen plasma reduction leads to a significant improvement of conductivity from 0.1 to 35.7 mu S cm(-1). The rutile solid solution with a homogenous mixing of Sn and Ti helps to form a uniform distribution of Sn nanodots in an amorphous lithiated titania matrix after lithiation, and subsequently maintains a sub 10 nm scale nanostructure even after long-term cycling. The lithiated titania matrix prevents the aggregation of tin nanodots, accommodates the volume change, and provides a stable conductive network for ion kinetics, which consequently results in excellent lithium-ion battery performance. The black (Sn, Ti)O-2 achieves a remarkable reversible capacity of 583.4 mA h g(-1) after 100 cycles at 0.2 A g(-1), retaining stable specific capacities of 419.2 mA h g(-1) at 2 A g(-1) after 500 cycles and 335.3 mA h g(-1) at 5 A g(-1). The overall performances of this material, including capacity, high-rate performance and cycling stability, are among the best for transition metal oxide anode materials. The ability to fundamentally improve the electrical conductivity and structure stability of the black material should open up new opportunities for high-performance Li-ion batteries.
机译:二元氧化物MO2(M = Ti,Sn)是锂离子电池的有希望的负极材料,但它们的容量较低(TiO2:类似于340 mA hg(-1)),循环稳定性较差(SnO2:<50个循环) )。在此,首先设计核-壳结构SnxTi1-xO2 @ SnxTi1-xO2-yHy的黑色(Sn,Ti)O-2固溶体,以同时收获大的可逆容量,高倍率性能和出色的循环稳定性。由氢等离子体还原获得的新材料的导电非晶态外壳导致电导率从0.1到35.7μS cm(-1)显着提高。锡和钛均匀混合的金红石固溶体有助于在锂化后在无定形锂化二氧化钛基质中形成锡纳米点的均匀分布,并随后即使在长期循环后仍保持低于10 nm的纳米结构。锂化的二氧化钛基质可防止锡纳米点的聚集,适应体积变化,并为离子动力学提供稳定的导电网络,因此可提供出色的锂离子电池性能。黑色(Sn,Ti)O-2在0.2 A g(-1)下经过100次循环后可实现583.4 mA hg(-1)的显着可逆容量,在2 A下仍保持419.2 mA hg(-1)的稳定比容量500次循环后的g(-1)和5 A g(-1)时的335.3 mA hg(-1)。这种材料的整体性能,包括容量,高倍率性能和循环稳定性,是过渡金属氧化物负极材料中最好的。从根本上改善黑色材料的电导率和结构稳定性的能力应为高性能锂离子电池开辟新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号