...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Ionothermal synthesis of microporous and mesoporous carbon aerogels from fructose as electrode materials for supercapacitors
【24h】

Ionothermal synthesis of microporous and mesoporous carbon aerogels from fructose as electrode materials for supercapacitors

机译:以果糖为超级电容器电极材料的电热合成微孔和中孔碳气凝胶

获取原文
获取原文并翻译 | 示例
           

摘要

The fabrication of hierarchical porous carbons with super-high surface areas from sustainable biomass is still challenging. Silica nanocasting and KOH activation are amenable to porosity introduction and therefore remain the most crucial pathways for porous carbon synthesis. However, these methods are multistep and rather energy-intensive processes. In the present work, a series of hierarchical porous carbon monoliths were prepared from fructose by a one-step ionothermal carbonization approach using an iron-based ionic liquid as solvent, and a porogenic agent. Importantly, the prepared carbon materials show narrow bi-modal pore distributions and possess super-high surface areas of ca. 1200 m(2) g(-1), which is the highest value in hydrothermal carbons as far as we know. The morphology of the monolithic carbons consists of interconnected carbon particles with fairly small particle sizes of ca. 30-50 nm. Moreover, the spent ionic liquids could be easily recovered by Soxhlet extraction, at above 98% for the cycle of ionothermal carbonization. Owing to their favorable textural properties, the impact of the porosity of the ionothermal carbons on their electrochemical capacitive performance was investigated. The ionothermal carbons exhibit a high specific capacitance of 245 F g(-1) at a current density of 1 A g(-1). The promising capacitive performance could be attributed to the high surface areas and well-controlled micro-and mesoporosities of the carbons. In addition, the hierarchical porosity and high surface area of the carbon lend it to highly efficient adsorption of methyl orange (q(e) = 240 mg g(-1)) and malachite green (q(e) = 170 mg g(-1)) from wastewater.
机译:利用可持续的生物质来制造具有超高表面积的分级多孔碳仍然具有挑战性。二氧化硅纳米铸造和KOH活化适合孔隙度的引入,因此仍然是多孔碳合成的最关键途径。但是,这些方法是多步骤且相当耗能的过程。在本工作中,使用铁基离子液体作为溶剂和成孔剂,通过果糖通过一步电离碳化方法,从果糖制备了一系列分层的多孔碳整料。重要的是,制得的碳材料显示出狭窄的双峰孔分布,并具有约30.0的超高表面积。 1200 m(2)g(-1),据我们所知是热液碳中的最高值。整体碳的形态由相互连接的碳颗粒组成,其碳颗粒的尺寸相当小。 30-50纳米。此外,废离子液体可通过索氏提取法轻松回收,对于电热碳化循环而言,回收率高达98%以上。由于其良好的质地特性,研究了电热碳的孔隙率对其电化学电容性能的影响。离子热碳在1 A g(-1)的电流密度下具有245 F g(-1)的高比电容。有前途的电容性能可归因于碳的高表面积和可控的微孔和中孔。此外,碳的分级孔隙率和高表面积使其能够高效吸附甲基橙(q(e)= 240 mg g(-1))和孔雀石绿(q(e)= 170 mg g(- 1))来自废水。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号