...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Nanostructured SnSb/MO_x (M =AI or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li storage performances
【24h】

Nanostructured SnSb/MO_x (M =AI or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li storage performances

机译:纳米结构的SnSb / MO_x(M = AI或Mg)/ C复合材料:混合机械化学合成和出色的Li储存性能

获取原文
获取原文并翻译 | 示例
           

摘要

A simple, inexpensive, fast, and scalable method of transforming micron-sized metal oxides into new intermetallic compound nanocomposites by a hybrid mechanochemical synthesis using a high-energy mechanical milling technique was developed. The SnSb/MO_x (M = Al or Mg)/C nanocomposites, synthesized by the mechanochemical reduction of SnO and Sb2O3 with Al or Mg, respectively, in the presence of carbon, were confirmed, by using various analytical techniques, to be composed of extremely small SnSb nanocrystallites, amorphous Al2O3 or nanocrystalline MgO, and amorphous carbon. Among the fabricated nanocomposites, the SnSb/MgO/C nanocomposite showed excellent electrochemical properties, such as a high energy density (1st charge: 572 mA h g~(-1) or ca. 3800 mA h cm~(-3)), cycling durability (above 490 mA h g~(-1) or ca. 3300 mA h cm~(-3) over 150 cycles), good initial coulombic efficiency (ca. 81.3%), and a fast rate capability (1C 480 mA h g~(-1), 3C: 420 mA h g~(-1)). These excellent electrochemical properties demonstrated by the SnSb-based nanocomposite electrodes confirmed their potential as alternative anode materials for Li-ion batteries.
机译:开发了一种简单,廉价,快速且可扩展的方法,该方法通过使用高能机械研磨技术的混合机械化学合成,将微米级金属氧化物转变为新的金属间化合物纳米复合材料。通过使用各种分析技术,证实了通过在碳存在下分别用Al或Mg对SnO和Sb2O3进行机械化学还原而合成的SnSb / MO_x(M = Al或Mg)/ C纳米复合材料,其组成为极小的SnSb纳米晶体,无定形Al2O3或纳米晶体MgO和无定形碳。在制备的纳米复合材料中,SnSb / MgO / C纳米复合材料表现出优异的电化学性能,例如高能量密度(第一次充电:572 mA hg〜(-1)或大约3800 mA h cm〜(-3)),循环耐用性(在150个循环中高于490 mA hg〜(-1)或约3300 mA h cm〜(-3)),良好的初始库仑效率(约81.3%)和快速的速率能力(1C 480 mA hg〜(-1)) (-1),3C:420mA hg〜(-1))。 SnSb基纳米复合材料电极显示出的这些优异的电化学性能证实了它们作为锂离子电池替代阳极材料的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号