...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Defect to R~(3+) energy transfer: colour tuning of persistent luminescence in CdSiO3
【24h】

Defect to R~(3+) energy transfer: colour tuning of persistent luminescence in CdSiO3

机译:R〜(3+)能量转移的缺陷:CdSiO3中持续发光的颜色调整

获取原文
获取原文并翻译 | 示例
           

摘要

Luminescence from trivalent rare earth (R~(3+): La~(3+)-Lu~(3+), excluding Pm~(3+)) ions was studied in the CdSiO3 host. The positions of the R~(2+/3+) energy levels in the band structure of CdSiO3 suggest that the doping of CdSiO3 with R~(2+) ions is difficult if not impossible. Red, pink, blue, green and close to white persistent luminescence colours were obtained by doping with Pr~(3+), Sm~(3+), Gd~(3+), Tb~(3+) and Dy~(3+), respectively. The efficiency of the defect to R~(3+) energy transfer determines if persistent luminescence arises from the 4f-4f, defect or a combination of these two emissions. In contrast to what is observed for Pr~(3+) and Tb~(3+), the defect to R~(3+) energy transfer did not give efficient persistent luminescence for Sm~(3+) and Dy~(3+), probably due to high energy losses and/or back transfer from the rare earth to defects. In line with the experimental observations, the in situ synchrotron radiation XANES spectra indicated the presence of only the trivalent Pr~(3+) and Tb~(3+) species thus excluding the direct R~(3+) → R~(IV) oxidation during the charging process of persistent luminescence. Finally, based on the band gap energy, R~(2+/3+) energy level positions, trap energies, and other optical and structural properties, the mechanism of persistent luminescence was developed for Pr~(3+) doped CdSiO3. For practical applications, the CdSiO3:R~(3+) system offers an excellent possibility for colour tuning of persistent luminescence by changing only the R~(3+) dopant instead of altering the host as is the case with the Eu~(2+) doped materials. Eventually, this will avoid the waste of both intellectual and financial resources.
机译:在CdSiO3基质中研究了三价稀土(R〜(3+):La〜(3 +)-Lu〜(3+),不包括Pm〜(3+))离子的发光。 CdSiO3的能带结构中R〜(2 + / 3 +)能级的位置表明,即使不是不可能,用R〜(2+)离子掺杂CdSiO3也很困难。通过掺杂Pr〜(3 +),Sm〜(3 +),Gd〜(3 +),Tb〜(3+)和Dy〜(获得红色,粉红色,蓝色,绿色和接近白色的持久发光色3+)。缺陷对R〜(3+)能量转移的效率决定了持久发光是由4f-4f,缺陷还是这两种发射的组合引起的。与Pr〜(3+)和Tb〜(3+)观察到的相反,R〜(3+)能量转移的缺陷并未为Sm〜(3+)和Dy〜(3 +),可能是由于高能量损失和/或从稀土向缺陷的反向转移。与实验观察一致,原位同步辐射XANES光谱表明仅存在三价Pr〜(3+)和Tb〜(3+)物种,因此不包括直接R〜(3+)→R〜(IV )在持续发光的充电过程中发生氧化。最后,基于带隙能量,R〜(2 + / 3 +)能级位置,陷阱能以及其他光学和结构性质,研究了Pr〜(3+)掺杂CdSiO3的持久发光机理。对于实际应用,CdSiO3:R〜(3+)系统通过仅改变R〜(3+)掺杂剂而不是像Eu〜(2)那样改变基质,为持久发光的颜色调节提供了极好的可能性+)掺杂材料。最终,这将避免浪费智力和财务资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号