首页> 外文期刊>Journal of Materials Engineering and Performance >An Understanding of HSLA-65 Plate Steels
【24h】

An Understanding of HSLA-65 Plate Steels

机译:对HSLA-65钢板的了解

获取原文
获取原文并翻译 | 示例
           

摘要

HSLA-65 plate steels can be produced using one of five plate manufacturing techniques: normalizing, controlled rolling (CR), controlled rolling followed by accelerated cooling (CR-AC), direct quenching and tempering (DQT), or conventional quenching and tempering (Q&T). The HSLA-65 steels are characterized by low carbon content and low alloy content, and they exhibit a low carbon equivalent that allows improved plate weldability. These characteristics in tarn (a) provide the steel plate with a refined micro-structure that ensures high strength and toughness; (b) eliminate or substantially reduce the need for preheating during welding; (c) resist susceptibility to hydrogen-assisted cracking (HAC) in the weld heat affected zone (HAZ) when fusion (arc) welded using low heat-input conditions; and (d) depending on section thickness, facilitate high heat-input welding (about 2 kJ/mm) without significant loss of strength or toughness in the HAZ. However, application of this plate manufacturing process and of these controls produces significant differences in the metallurgical structure and range of mechanical properties of the HSLA-65 plate steels both among themselves and versus conventional higher strength steel (HSS) plates. For example, among the HSLA-65 plate steels, those produced by Q&T exhibit minimal variability in mechanical properties, especially in thicker plates. Besides variability in mechanical properties depending on plate thickness, the CR and CR-AC plate steels exhibit a relatively higher yield strength to ultimate tensile strength (YS/UTS) ratio than do DQT and Q&T steels. Such differences in processing and properties of HSLA-65 plate steels could potentially affect the selection and control of various secondary fabrication practices, including arc welding. Consequently, fabricators must exercise extreme caution when transferring allowable limits of certified secondary fabrication practices from one type of HSLA-65 plate steel to another, even for the same plate thickness.
机译:HSLA-65钢板可以使用以下五种钢板制造技术之一进行生产:正火,控制轧制(CR),控制轧制然后进行加速冷却(CR-AC),直接淬火和回火(DQT)或常规淬火和回火(问与答)。 HSLA-65钢的特点是碳含量低,合金含量低,并且碳含量低,可以提高板的可焊性。塔恩纤维的这些特性(a)为钢板提供了精致的微观结构,可确保高强度和韧性。 (b)消除或大大减少焊接过程中的预热需求; (c)在低热输入条件下进行熔焊(电弧)焊接时,在焊接热影响区(HAZ)中不易受到氢辅助裂纹(HAC)的影响; (d)根据截面厚度,在不明显降低热影响区强度或韧性的情况下,促进高热输入焊接(约2 kJ / mm)。但是,这种钢板制造工艺和这些控制措施的应用,使它们之间以及与传统的高强度钢板(HSS)相比,在HSLA-65钢板的冶金结构和机械性能范围上产生了显着差异。例如,在HSLA-65钢板中,Q&T生产的钢板在机械性能方面表现出最小的变化,尤其是在较厚的钢板中。除了取决于钢板厚度的机械性能差异外,CR和CR-AC钢板还具有比DQT和Q&T钢更高的屈服强度与极限抗拉强度(YS / UTS)之比。 HSLA-65钢板在加工和性能上的此类差异可能潜在地影响各种辅助制造方法(包括电弧焊)的选择和控制。因此,在将经过认证的二次加工规范的允许范围从一种类型的HSLA-65钢板转移到另一种HSLA-65钢板时,即使对于相同的钢板厚度,制造商也必须格外小心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号