首页> 外文期刊>Journal of Materials Engineering and Performance >Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades
【24h】

Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

机译:玻璃纤维环氧树脂基复合材料5 MW水平轴风力涡轮机叶片的多学科设计优化

获取原文
获取原文并翻译 | 示例
           

摘要

A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.
机译:引入了多学科设计优化程序,并将其用于开发经济高效的玻璃纤维增​​强环氧基复合材料5 MW水平轴风力涡轮机(HAWT)叶片。涡轮叶片的成本效益是通过能源成本(CoE)来定义的,即三叶片HAWT转子开发/制造成本与相关的年度能源产量之比。为了评估作为叶片设计和运行条件的函数的年发电量,必须采用基于空气动力学的计算分析。就涡轮机叶片成本而言,可通过分别计算叶片质量和与叶片质量/尺寸有关的生产成本来评估给定的空气动力学设计。对于所分析的每个空气动力学设计,都采用了基于结构有限元和后处理生命周期评估分析的方法,以确定最小叶片质量,从而确保了与叶片准静态强度,疲劳相关的功能要求。满足了受控的刀片耐久性和刀片刚度。为了确定涡轮叶片的生产成本(对于当前流行的制造工艺,湿法叠层),有关行业制造经验的可用数据与伴随的叶片质量,表面积和假定生产运行的持续时间相结合。这项工作清楚地揭示了同时满足强度,耐用性和刚度要求,同时保持高水平的风能捕获效率和降低生产成本所带来的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号