...
【24h】

The application of fractal and quantum geometry to brittle fracture

机译:分形和量子几何在脆性断裂中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

This paper examines three apparently disparate views of fracture in brittle materials with the purpose of showing the interrelationship of the fracture process at different length scales. Quantitative fractographic analysis of brittle fracture surfaces shows that there are characteristic markings on the surfaces that are self-similar and scale invariant, implying that fractal analysis is a reasonable approach to analyzing these surfaces. The fractal dimension is directly proportional to the fracture energy, #gamma#, during fracture for many brittle materials, i.e., #gamma# = 1/2 Ea_0D~* where E is the elastic modulus, a_0 a structural parameter and D~* is the fractal dimensional increment. Analysis of previous results of molecular dynamics modeling shows that the fractal nature of the fracture surface is consistent with the predicted surface produced during simulated fracture. The fractal dimensional increment, D~*, of the simulated fracture surface in a silica glass and silicon single crystal over a single order of magnitude matched well with those values measured on fracture surfaces of beams fractured in flexure for the same materials at length scales 1000-100 000 times larger. Finally, a ring contraction mechanism, modeled using semi-empirical quantum mechanical molecular orbital methods, is shown to be a likely step in the fracture of silica tetrahedra along the crack front. The geometry of the structure formed at the atomic scale from identified a reasonable atomic level foundation for the structural parameter, a_0. Based on a comparison of atomic and molecular modeling with macroscopically measured values of D~* and a_0, we suggest that the fracture process is a percolation of a series of ring contractions along the crack front, which result in the observed fracture surfaces for several brittle materials.
机译:本文研究了三个明显不同的脆性材料断裂视图,目的是显示不同长度尺度下断裂过程的相互关系。脆性断裂表面的定量分形分析表明,表面具有自相似且尺度不变的特征标记,这表明分形分析是分析这些表面的合理方法。对于许多脆性材料,分形维数与断裂能#gamma#成正比,即#gamma#= 1/2 Ea_0D〜*其中E是弹性模量,a_0是结构参数,D〜*是分形维数增量。对先前分子动力学建模结果的分析表明,断裂表面的分形性质与模拟断裂过程中产生的预测表面一致。石英玻璃和硅单晶中的模拟断裂表面在单个数量级上的分形维数D〜*,与相同材料在长度尺度为1000的挠曲断裂的梁的断裂表面上测得的值非常吻合-100 000倍大。最后,使用半经验量子力学分子轨道方法建模的环收缩机制显示出是沿裂纹前沿的二氧化硅四面体断裂的可能步骤。从原子尺度上形成的结构的几何形状由结构参数a_0的合理原子水平基础确定。基于原子模型和分子模型与宏观测量值D〜*和a_0的比较,我们认为断裂过程是沿着裂纹前沿的一系列环收缩的渗滤,这导致观察到的断裂表面存在若干脆性材料。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号