...
首页> 外文期刊>Journal of Micromechanics and Microengineering >Methods of reducing non-specific adsorption in microfluidic biosensors
【24h】

Methods of reducing non-specific adsorption in microfluidic biosensors

机译:减少微流生物传感器中非特异性吸附的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Non-specific adsorption (NS A) of biomolecules is a persistent challenge in microfluidic biosensors. Microfluidic biosensors often have immobilized bioreceptors such as antibodies, enzymes, DNAs, etc, via linker molecules such as SAMs (self-assembled monolayers) to enhance immobilization. However, the linker molecules are very susceptible to NSA, causing false responses and decreasing sensitivity. In this paper, we present design methods to reduce the NSA of alkanethiol SAMs, which are popular linker molecules on microfluidic biosensors. Three design parameters were studied for two different chain-length SAMs (n = 2, and 10): (i) SAM incubation time, (ii) surface roughness [0.8 nm and 4.4 nm RMS (root mean square)] and (iii) gold crystal re-growth along (111) the target orientation. NSA was monitored by surface plasmon resonance (SPR). The results suggest that increased SAM incubation time reduces NSA, and that short-chain SAMs respond more favorably than the long-chain SAMs. Both SAMs were shown to be sensitive to surface roughness, and long-chain SAMs reduced NSA by 75%. Gold crystal re-growth along (111) the target orientation profoundly reduced NSA on the short-chain SAM. On a gold surface where surface roughness was 0.8 nm and there was strong directional alignment along the (111) gold crystal, final concentrations of nonspecifically bound proteins were 0.05 ng mm~(-2) (fibrinogen) and 0.075 ng mm~(-2) (lysozyme) - significantly lower than other known methods. The results show that optimizing three parameters (SAM incubation time, gold surface roughness and gold crystal orientation) improved SAM sensitivity for fibrinogen-anti-fibrinogen conjugates by a factor of 5 in 2.94 pM, suggesting that the methods are effective for reducing NSA in microfluidic biosensors.
机译:生物分子的非特异性吸附(NS A)是微流体生物传感器中的持续挑战。微流体生物传感器通常通过诸如SAMs(自组装单层)之类的接头分子来固定化生物受体,例如抗体,酶,DNA等,以增强固定化。但是,接头分子对NSA非常敏感,从而导致错误反应并降低敏感性。在本文中,我们提出了减少链烷硫醇SAMs的NSA的设计方法,链烷硫醇SAMs是微流体生物传感器上流行的连接分子。研究了两种不同链长SAM(n = 2和10)的三个设计参数:(i)SAM孵育时间,(ii)表面粗糙度[0.8 nm和4.4 nm RMS(均方根)]和(iii)金晶体沿着(111)目标方向重新生长。通过表面等离子体共振(SPR)监测NSA。结果表明增加的SAM孵育时间减少了NSA,并且短链SAM的响应比长链SAM的响应更好。两种SAMs均对表面粗糙度敏感,长链SAMs可将NSA降低75%。金晶体沿(111)方向重新生长,大大降低了短链SAM上的NSA。在表面粗糙度为0.8 nm且沿(111)金晶体具有强方向排列的金表面上,非特异性结合蛋白的最终浓度为0.05 ng mm〜(-2)(纤维蛋白原)和0.075 ng mm〜(-2 )(溶菌酶)-明显低于其他已知方法。结果表明,优化三个参数(SAM孵育时间,金表面粗糙度和金晶体取向)可将SAM对纤维蛋白原-抗纤维蛋白原缀合物的敏感性提高2.94 pM的5倍,这表明该方法可有效降低微流体中的NSA。生物传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号