...
首页> 外文期刊>Journal of Neurophysiology >Rostral ganglia are required for induction but not expression of crayfish escape reflex habituation: role of higher centers in reprogramming low-level circuits.
【24h】

Rostral ganglia are required for induction but not expression of crayfish escape reflex habituation: role of higher centers in reprogramming low-level circuits.

机译:延髓神经节是诱导所必需的,而不是小龙虾的表达逃避反射的习惯:上级中心在重编程低级回路中的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

It is widely assumed that learning results from alterations in the strength of synapses within the neural pathways that mediate a learned behavioral response and that these alterations are directly caused by training-induced activity of neurons connected by the changing synapses. Initial evidence for this view came from studies of habituation of defensive reflexes in several invertebrate species. However, more recent studies of habituation of the escape reflex in one of these species, the crayfish, have shown that habituation is substantially caused by tonic inhibitory input from cephalic ganglia; this descending inhibition suppresses the activity of neurons within the escape circuit, which reside in caudal ganglia. Such control by descending inhibition indicates that animals with encephalized nervous systems do not entirely abdicate to low-level circuitry the important decision of whether to habituate to stimuli that might warn of danger. Higher centers in fact play a major role in controlling the habituation of this potentially life-saving protective response. Another way for higher centers to control lower ones would be to induce alteration of the lower center's intrinsic properties. Here, we show that, whereas descending input from higher ganglia is needed to induce habituation, once established, habituation persists even after rostral ganglia are disconnected. This provides evidence that lower-level neural circuits can be reprogrammed through transient interaction with higher ganglia to decrease their intrinsic tendency to produce escape.
机译:人们普遍认为,学习是由于神经通路内突触强度的改变而介导的,而这种改变介导了学习的行为反应,而这些改变是由训练诱导的由不断变化的突触连接的神经元的活动直接引起的。这种观点的最初证据来自对几种无脊椎动物的防御反射习惯化的研究。然而,对这些物种之一小龙虾的逃逸反射习性的最新研究表明,习性基本上是由头神经节的进补抑制性输入引起的。这种下降的抑制作用抑制了位于尾神经节中的逃逸回路内的神经元的活动。通过降低抑制作用进行的这种控制表明,脑神经系统动物并未完全放弃对低水平回路的重要决定,即是否习惯于可能警告危险的刺激。实际上,较高的中心在控制这种可能挽救生命的保护性反应的习惯方面起着重要作用。较高中心控制较低中心的另一种方法是引起较低中心的固有属性的改变。在这里,我们表明,虽然需要较高神经节的下降输入来诱导习惯性,但一旦建立,即使在延髓神经节断开后,习惯性仍然持续。这提供了证据,可以通过与较高神经节的短暂相互作用来重新编程较低级别的神经回路,以减少其产生逃逸的内在趋势。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号