...
首页> 外文期刊>Journal of Neurophysiology >Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
【24h】

Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.

机译:基于反弹电流的小脑记忆的锁定和钥匙机制。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
机译:学习和记忆理论的一个基本问题是神经元可塑性是否足以指导适当的记忆回忆。可替代地,在读出期间可能发生除读出存储的存储器之外的信息处理。我们制定了关于小脑依赖的运动记忆的“锁匙式”假说,其中成功的学习可以塑造神经活动,以匹配一个暂时性的过滤器,以防止存储但不适当的运动反应的表达。因此,神经元可塑性本身是必需的,但不足以改变运动行为。我们通过对两个小脑行为的计算研究探索了这个想法,并研究了深小脑和前庭核神经元是否可以过滤来自Purkinje细胞的信号,否则它们会驱动不适当的运动反应。在眨眼条件下,反射获取要求条件刺激(CS)优先于未条件刺激(US)> 100 ms。在我们的小脑核神经元生物物理模型中,这种要求是通过抑制后反弹性去极化现象产生的,并与条件反射时间和可靠性方面的长期行为数据相匹配。尽管CS-US间隔<100 ms可能会诱导浦肯野细胞可塑性,但仅当CS-US训练间隔> 100 ms时,小脑核神经元才会驱动条件性反应。该界限反映了使回弹电流(例如T型Ca2 +)失活的最短时间。在前庭眼反射适应中,前庭核神经元中的超极化激活电流可能是适应幅度对视觉和前庭刺激时间的类似依赖性的基础。因此,提出的锁定和钥匙机制将通道动力学联系起来以恢复性能,并产生关于回弹去极化的扰动如何影响运动表达的具体预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号