...
首页> 外文期刊>Journal of Neurophysiology >Locomotor strategy for pedaling: muscle groups and biomechanical functions.
【24h】

Locomotor strategy for pedaling: muscle groups and biomechanical functions.

机译:踩踏运动策略:肌肉群和生物力学功能。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A group of coexcited muscles alternating with another group is a common element of motor control, including locomotor pattern generation. This study used computer simulation to investigate human pedaling with each muscle assigned at times to a group. Simulations were generated by applying patterns of muscle excitations to a musculoskeletal model that includes the dynamic properties of the muscles, the limb segments, and the crank load. Raasch et al. showed that electromyograms, pedal reaction forces, and limb and crank kinematics recorded during maximum-speed start-up pedaling could be replicated with two signals controlling the excitation of four muscle groups (1 group alternating with another to form a pair). Here a four-muscle-group control also is shown to replicate steady pedaling. However, simulations show that three signals controlling six muscle groups (i.e., 3 pairs) is much more biomechanically robust, such that a wide variety of forward and backward pedaling tasks can be executed well. We found the biomechanical functions necessary for pedaling, and how these functions can be executed by the muscle groups. Specifically, the phasing of two pairs with respect to limb extension and flexion and the transitions between extension and flexion do not change with pedaling direction. One pair of groups (uniarticular hip and knee extensors alternating with their anatomic antagonists) generates the energy required for limb and crank propulsion during limb extension and flexion, respectively. In the second pair, the ankle plantarflexors transfer the energy from the limb inertia to the crank during the latter part of limb extension and the subsequent limb extension-to-flexion transition. The dorsiflexors alternate with the plantarflexors. The phasing of the third pair (the biarticular thigh muscles) reverses with pedaling direction. In forward pedaling, the hamstring is excited during the extension-to-flexion transition and in backward pedaling during the opposite transition. In both cases hamstrings propel the crank posteriorly through the transition. Rectus femoris alternates with hamstrings and propels the crank anteriorly through the transitions. With three control signals, one for each pair of groups, different cadences (or power outputs) can be achieved by adjusting the overall excitatory drive to the pattern generating elements, and different pedaling goals (e.g., smooth, or energy-efficient pedaling; 1- or 2-legged pedaling) by adjusting the relative excitation levels among the muscle groups. These six muscle groups are suggested to be elements of a general strategy for pedaling control, which may be generally applicable to other human locomotor tasks.
机译:一组同刺激的肌肉与另一组交替运动是运动控制(包括运动模式产生)的常见要素。这项研究使用计算机仿真来研究人的脚踏,每只肌肉有时分配给一组。通过将肌肉激励模式应用于肌肉骨骼模型来生成模拟,该模型包括肌肉,肢体节段和曲柄负荷的动态特性。 Raasch等。结果表明,在最大速度启动踏板过程中记录的肌电图,踏板反作用力以及肢体和曲柄运动学可以通过两个信号来复制,这两个信号控制了四个肌肉组的激励(一组交替地组成一对)。在此,还显示了一个四肌肉组控制来复制稳定的踩踏板。然而,模拟表明,控制六个肌肉群(即3对)的三个信号在生物力学上更加坚固,因此可以很好地执行各种向前和向后踩踏任务。我们发现了踩踏所需的生物力学功能,以及肌肉群如何执行这些功能。具体地,关于肢体伸展和屈曲的两对的相位以及伸展和屈曲之间的过渡不会随着踩踏方向而改变。一对组(髋关节和膝关节单膝伸肌及其解剖拮抗剂交替产生)分别在肢体伸展和屈曲期间产生肢体和曲柄推进所需的能量。在第二对中,踝关节plant屈肌在肢体伸展的后期和随后的肢体伸展到屈曲过渡期间,将能量从肢体惯性传递到曲柄。背屈与plant屈交替。第三对(双关节大腿肌肉)的相位随着踩踏方向而反转。在向前踩踏板时,绳肌在伸展到屈曲过渡期间被激发,而在向后踩踏板时在相反的过渡过程中被激发。在这两种情况下,绳肌都在过渡过程中向后推动曲柄。股直肌与绳肌交替,向前推动曲柄穿过过渡区。使用三个控制信号(每对一组),可以通过调整对模式生成元件的总体激励驱动以及不同的踩踏目标(例如,平稳或节能的踩踏; 1)来获得不同的踏频(或功率输出)。 -或两腿蹬踏),方法是调整肌肉组之间的相对兴奋水平。建议将这六个肌肉群作为踏板控制总体策略的要素,该策略通常可适用于其他人类运动任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号