首页> 外文期刊>Journal of Neuroscience Methods >A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux.
【24h】

A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux.

机译:一种自参考型谷氨酸生物传感器,用于测量实时神经元谷氨酸通量。

获取原文
获取原文并翻译 | 示例
           

摘要

Quantification of neurotransmitter transport dynamics is hindered by a lack of sufficient tools to directly monitor bioactive flux under physiological conditions. Traditional techniques for studying neurotransmitter release/uptake require inferences from non-selective electrical recordings, are invasive/destructive, and/or suffer from poor temporal resolution. Recent advances in electrochemical biosensors have enhanced in vitro and in vivo detection of neurotransmitter concentration under physiological/pathophysiological conditions. The use of enzymatic biosensors with performance enhancing materials (e.g., carbon nanotubes) has been a major focus for many of these advances. However, these techniques are not used as mainstream neuroscience research tools, due to relatively low sensitivity, excessive driftoise, low signal-to-noise ratio, and inability to quantify rapid neurochemical kinetics during synaptic transmission. A sensing technique known as self-referencing overcomes many of these problems, and allows non-invasive quantification of biophysical transport. This work presents a self-referencing CNT modified glutamate oxidase biosensor for monitoring glutamate flux near neuraleuronal cells. Concentration of basal glutamate was similar to other in vivo and in vitro measurements. The biosensor was used in self-referencing (oscillating) mode to measure net glutamate flux near neural cells during electrical stimulation. Prior to stimulation, the average influx was 33.9+/-6.4 fmol cm(-2)s(-1)). Glutamate efflux took place immediately following stimulation, and was always followed by uptake in the 50-150 fmol cm(-2)s(-1) range. Uptake was inhibited using threo-beta-benzyloxyaspartate, and average surface flux in replicate cells (1.1+/-7.4 fmol cm(-2)s(-1)) was significantly lower than uninhibited cells. The technique is extremely valuable for studying neuropathological conditions related to neurotransmission under dynamic physiological conditions.
机译:缺乏足够的工具来直接监测生理条件下的生物活性通量,阻碍了神经递质运输动力学的量化。用于研究神经递质释放/摄取的传统技术需要来自非选择性电记录的推论,具有侵入性/破坏性,和/或具有较差的时间分辨率。电化学生物传感器的最新进展增强了生理/病理生理条件下神经递质浓度的体外和体内检测。酶促生物传感器与性能增强材料(例如碳纳米管)一起使用已成为许多这些进展的主要重点。但是,由于相对较低的灵敏度,过大的漂移/噪声,低信噪比以及无法量化突触传递过程中快速的神经化学动力学,这些技术并未用作主流神经科学研究工具。一种称为自参考的传感技术克服了许多此类问题,并允许对生物物理运输进行非侵入式量化。这项工作提出了一种自参考碳纳米管修饰的谷氨酸氧化酶生物传感器,用于监测神经/神经细胞附近的谷氨酸通量。基础谷氨酸的浓度类似于其他体内和体外测量。生物传感器以自参考(振荡)模式使用,以在电刺激过程中测量神经细胞附近的净谷氨酸通量。在刺激之前,平均流入量为33.9 +/- 6.4 fmol cm(-2)s(-1))。谷氨酸外排在刺激后立即发生,并总是在50-150 fmol cm(-2)s(-1)范围内被摄取。使用苏木-β-苄氧基天冬氨酸抑制摄取,并且复制细胞(1.1 +/- 7.4 fmol cm(-2)s(-1))中的平均表面通量显着低于未抑制细胞。该技术对于研究与动态生理条件下神经传递有关的神经病理学条件极为有价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号