首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >A SWELLING MODEL FOR STOICHIOMETRIC SIC AT TEMPERATURES BELOW 1000-DEGREES-C UNDER NEUTRON IRRADIATION
【24h】

A SWELLING MODEL FOR STOICHIOMETRIC SIC AT TEMPERATURES BELOW 1000-DEGREES-C UNDER NEUTRON IRRADIATION

机译:中子辐照下温度低于1000℃的化学计量SIC溶胀模型

获取原文
获取原文并翻译 | 示例
       

摘要

A simple phenomenological model for the saturation swelling below 1000 degrees C of neutron-irradiated silicon carbide (SiC) is presented in this paper. Under fast neutron irradiation, SiC is known to undergo volumetric expansion (swelling) which quickly saturates at a fast fluence of approximately 10(25) n/m(2) for irradiation temperatures below 1000 degrees C. A previous model due to Balarin attributes swelling to lattice dilation as a result of single point defects. We show in this paper that the experimentally observed linear temperature dependence of saturation swelling can be explained in terms of the formation and growth of small interstitial clusters, resulting directly from collision cascades initiated by energetic neutrons. These loops grow by absorption of mobile carbon interstitials and their composition is subject to stoichiometry constraints, requiring absorption of slower silicon interstitials. Because of cascade re-solution events, the density of loops decreases sharply with temperature as a result of overlap of cascades with larger size loops at higher temperatures. The average radius of these loops increases with temperature. Volumetric swelling is shown to obey a linear temperature dependence as a consequence of the strong decrease in density and the simultaneous increase in average radius, and to saturate with fluence. The model is shown to be consistent with experimental observations. In the temperature range below 500-600 degrees C, swelling seems to be dominated by single point defects, or defect clusters containing only a few atoms, in accordance with the explanation offered by Balarin. (C) 1997 Elsevier Science B.V. [References: 38]
机译:本文提出了一种简单的现象模型,用于中子辐照碳化硅(SiC)在1000摄氏度以下的饱和膨胀。在快速中子辐照下,已知SiC会经历体积膨胀(膨胀),对于低于1000摄氏度的辐照温度,其会以大约10(25)n / m(2)的快速通量迅速饱和。由于Balarin的原因,先前的模型会膨胀单点缺陷导致晶格膨​​胀。我们在本文中表明,实验观察到的饱和膨胀的线性温度依赖性可以用小间隙团簇的形成和增长来解释,这些间隙团簇是由高能中子直接引发的碰撞级联直接产生的。这些环通过吸收可移动的碳间隙物而生长,并且它们的组成受到化学计量的约束,需要吸收较慢的硅间隙物。由于级联分解事件,由于在较高温度下较大尺寸的级联的级联重叠,回路的密度随温度急剧降低。这些回路的平均半径随温度增加。由于密度的强烈降低和平均半径的同时增加,体积溶胀表现出服从线性温度依赖性,并随着通量饱和而饱和。该模型显示与实验观察结果一致。根据Balarin提供的解释,在低于500-600摄氏度的温度范围内,膨胀似乎主要由单点缺陷或仅包含几个原子的缺陷簇组成。 (C)1997 Elsevier Science B.V. [参考:38]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号