...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >THE DRAG FORCE ACTING ON A SPHERICAL NON-EVAPORATING OR EVAPORATING PARTICLE IMMERSED INTO A RAREFIED PLASMA FLOW
【24h】

THE DRAG FORCE ACTING ON A SPHERICAL NON-EVAPORATING OR EVAPORATING PARTICLE IMMERSED INTO A RAREFIED PLASMA FLOW

机译:吸入到等离子体流中的球形非蒸发或蒸发颗粒上的拉力

获取原文
获取原文并翻译 | 示例
           

摘要

A previous drag force study for a spherical particle immersed into a rarefied plasma flow has been improved upon, based on a more detailed analysis concerning the interaction between the charged sphere and ions and electrons. Revised analytical expressions are presented for the drag force acting on a non-evaporating or evaporating particle for the extreme case of the free-molecule flow regime and a thin plasma sheath. Both metallic and non-metallic limiting cases of the particle materials (with infinite and zero electrical conductivity, respectively) are considered. It is shown that the ion component of the drag force is appreciably less than the previous result and that the drag coefficient for a non-evaporating particle becomes identical to that derived for the case of non-ionized gases. The drag force on a spherical particle is directly proportional to the square of the particle radius and to the relative velocity between the particle and the bulk plasma at low speed ratios. Evaporation enhances the drag force acting on a particle due to the additional contribution to the drag force caused by the reaction of non-uniform evaporated mass flux outflowing from the evaporating particle. This evaporation-added drag force is more significant for particle materials with lower latent heat of evaporation and lower vapour-molecular mass. For the case without evaporation, there is almost no difference between metallic and non-metallic particles in their drag forces. However, a marked difference may exist between metallic and non-metallic evaporating particles in their drag forces because the different floating potential distributions on the surfaces of the two types of particles cause different distributions of the local heat fluxes along the particle surfaces. [References: 19]
机译:基于对带电球体与离子和电子之间相互作用的更详细分析,以前对沉浸在稀疏等离子体流中的球形粒子的阻力研究得到了改进。对于在自由分子流态和薄等离子体鞘的极端情况下作用在非蒸发或蒸发颗粒上的阻力,给出了修正的解析表达式。考虑了颗粒材料的金属和非金属极限情况(分别具有无限的电导率和零的电导率)。结果表明,阻力的离子分量明显小于先前的结果,并且非蒸发颗粒的阻力系数变得与非离子化气体的阻力系数相同。在低速比下,球形颗粒上的阻力与颗粒半径的平方成正比,并且与颗粒与体等离子体之间的相对速度成正比。蒸发增强了作用在颗粒上的阻力,这是由于从蒸发颗粒流出的不均匀的蒸发质量通量的反应引起的对阻力的附加贡献。对于具有较低的蒸发潜热和较低的汽化分子质量的颗粒材料,这种增加蒸发的牵引力更为重要。对于没有蒸发的情况,金属和非金属颗粒之间的阻力几乎没有区别。但是,金属和非金属蒸发颗粒之间的拖曳力可能存在明显差异,因为两种类型颗粒表面上的不同浮动电位分布会导致沿颗粒表面的局部热通量分布不同。 [参考:19]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号