...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >NON-LAPLACIAN ION TRAJECTORIES IN MUTUALLY INTERACTING CORONA DISCHARGES
【24h】

NON-LAPLACIAN ION TRAJECTORIES IN MUTUALLY INTERACTING CORONA DISCHARGES

机译:相互相互作用的日冕放电中的非拉普拉斯离子轨迹

获取原文
获取原文并翻译 | 示例
           

摘要

Ion drift in a single-source corona discharge occurs along trajectories which deviate relatively little from the Laplacian field direction. This allows the Deutsch approximation to be used with low errors as in the Popkov model. For coronas from more than one source, the interaction of the space-charge electric fields can cause significant trajectory distortion. Measurements of positive coronas from twin- wire systems make it possible to quantify the Deutsch error. A charge expansion model is used to calculate the ion trajectories at the corona boundaries. The Popkov model predicts, in agreement with measurements, that the normalization of the current density and electric field profiles with respect to the maximum values (J(max) and E-max) yields unique curves independent of the magnitude of the applied voltage. However, the shapes of the profiles of current density and electric field for small wire displacements give poor simulations because of the effect of the proximity of the interacting coronas. In practice this would lead to failure of the Kaptsov condition at the wire surface. The charge expansion model avoids the difficulties of the Popkov model's assumptions. A finite-difference procedure of the charge-expansion model has been outlined and applied to the position of maximum current density (theta = 0) where the ion path is known. This confirms the failure of the Kaptsov approximation of the field at the corona conductor. Application of the charge-expansion model to the position of minimum current density (theta = 90 degrees) has been also possible in order to estimate the drift path length. This trajectory is non-Laplacian in shape and the results indicate that, along this path, a position of minimum field is encountered rather than the monotonic field found at theta = 0. [References: 12]
机译:单源电晕放电中的离子漂移会沿着偏离拉普拉斯场方向相对较小的轨迹发生。像Popkov模型一样,这使得Deutsch近似值的使用具有较低的误差。对于来自多个来源的电晕,空间电荷电场的相互作用会导致明显的轨迹失真。通过双线系统对正电晕的测量可以量化Deutsch误差。电荷扩展模型用于计算电晕边界处的离子轨迹。 Popkov模型与测量结果一致地预测,相对于最大值(J(max)和E-max)的电流密度和电场分布的归一化将产生与施加电压的大小无关的独特曲线。然而,由于相互作用的电晕的邻近效应,对于较小的导线位移,电流密度和电场的轮廓形状给出的模拟效果很差。实际上,这将导致导线表面的Kaptsov条件失效。电荷扩展模型避免了Popkov模型假设的困难。概述了电荷扩展模型的有限差分程序,并将其应用于已知离子路径的最大电流密度(θ= 0)位置。这证实了电晕导体处电场的Kaptsov近似失效。为了估计漂移路径的长度,也有可能将电荷扩展模型应用于最小电流密度(θ= 90度)的位置。该轨迹是非拉普拉斯形状的,其结果表明,沿着该路径遇到的是最小场的位置,而不是在theta = 0处发现的单调场。[参考文献:12]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号