...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle
【24h】

Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle

机译:再生封闭式恒温储热器布雷顿循环的功率密度分析与优化

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the power density, defined as the ratio of power output to the maximum specific volume in the cycle, is taken as the objective for performance analysis and optimization of an irreversible regenerated closed Brayton cycle coupled to variable-temperature heal reservoirs from the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulae about the relations between power density and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the regenerator, the it-reversible compression and expansion losses in the compressor and turbine, the pressure drop losses at the heater, cooler and regenerator as well as in the piping, and the effect of the finite thermal capacity rate of the heat reservoirs. The obtained results are compared with those results obtained by using the maximum power criterion, and the advantages and disadvantages of maximum power density design are analysed. The maximum power density optimization is performed in two stages. The first is to search the optimum heat conductance distribution corresponding to the optimum power density among the hot- and cold-side heat exchangers and the regenerator for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the optimum power density between the working fluid and the high-temperature heat source for a fixed ratio of the thermal capacitance rates of two heat reservoirs. The influences of some design parameters, including the effectiveness of the regenerator, the inlet temperature ratio of the heat reservoirs, the effectiveness of the heat exchangers between the working fluid and the heat reservoirs, the efficiencies of the compressor and the turbine, and the pressure recovery coefficient, on the optimum heat conductance distribution, the optimum thermal capacitance rate matching, and the maximum power density are provided by numerical examples. The power plant design with optimization leads to a smaller size including the compressor, turbine, and the hot- and cold-side heat exchangers and the regenerator. When the heat transfers between the working fluid and the heat reservoirs are carried out ideally, the pressure drop loss may be neglected, and the thermal capacity rates of the heat reservoirs are infinite, the results of this paper then replicate those obtained in recent literature. [References: 46]
机译:在本文中,功率密度(定义为循环中的功率输出与最大比容之比)被用作性能分析和优化不可逆再生封闭式布雷顿循环的目标,该循环与来自温度可变储热库的储罐耦合。有限时间热力学(FTT)或熵产生最小化(EGM)的观点。通过热侧和冷侧热交换器和再生器的热阻损失,压缩机和涡轮机中可逆的压缩和膨胀损失,压降得出功率密度和压力比之间关系的解析公式。加热器,冷却器,蓄热器以及管道的热损失以及储热器的有限热容率的影响。将获得的结果与使用最大功率准则获得的结果进行比较,并分析了最大功率密度设计的优缺点。最大功率密度优化分两个阶段执行。第一种是在固定的总热交换器存量中,在热侧和冷侧热交换器和蓄热室之间寻找与最佳功率密度相对应的最佳导热率分布。第二个是针对两个储热器的热容比的固定比率来搜索与工作流体和高温热源之间的最佳功率密度相对应的最佳热容比匹配。一些设计参数的影响,包括回热器的效率,储热器的入口温度比,工作流体和储热器之间的热交换器的效率,压缩机和涡轮的效率以及压力数值示例提供了关于最佳热导分布的最佳恢复系数,最佳热容率匹配和最大功率密度。经过优化的发电厂设计导致了较小的尺寸,包括压缩机,涡轮机,热侧和冷侧热交换器以及再生器。当理想地进行工作流体与储热器之间的热传递时,可以忽略压降损失,并且储热器的热容量率是无限的,本文的结果将与最近文献中获得的结果相仿。 [参考:46]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号