...
首页> 外文期刊>Journal of strength and conditioning research >Maximum power training load determination and its effects on load-power relationship, maximum strength, and vertical jump performance
【24h】

Maximum power training load determination and its effects on load-power relationship, maximum strength, and vertical jump performance

机译:最大功率训练负载确定及其对负载-功率关系,最大强度和垂直跳跃性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This study examines the changes in maximum strength, vertical jump performance, and the load-velocity and load-power relationship after a resistance training period using a heavy load and an individual load that maximizes mechanical power output with and without including body mass in power calculations. Forty-three moderately trained men (age: 22.7 6 2.5 years) were separated into 4 groups, 2 groups of maximum power, 1 where body mass was not included in the calculations of the load that maximizes mechanical power (Pmax 2 bw, n = 11) and another where body mass was included in the calculations (Pmax + bw, n = 9), a high load group (HL-90%, n = 12), and a control group (C, n = 11). The subjects performed 4-6 sets of jump squat and the repeated-jump exercises for 6 weeks. For the jump squat, the HL-90% group performed 3 repetitions at each set with a load of 90% of 1 repetition maximum (1RM), the Pmax 2 bw group 5 repetitions with loads 48-58% of 1RM and the Pmax + bw 8 repetitions with loads 20-37% of 1RM. For the repeated jump, all the groups performed 6 repetitions at each set. All training groups improved (p < 0.05) maximum strength in the semisquat exercise (HL-90%: 15.2 ± 7.1, Pmax 2 bw: 6.6 ± 4.7, Pmax + bw: 6.9 ± 7.1, and C: 0 6 4.3%) and the HL-90% group presented higher values (p < 0.05) than the other groups did. All training groups improved similarly (p < 0.05) squat (HL-90%: 11.7 6 7.9, Pmax 2 bw: 14.5 ± 11.8, Pmax + bw: 11.3 ± 7.9, and C: 22.2 ± 5.5%) and countermovement jump height (HL-90%: 8.6 ± 7.9, Pmax 2 bw: 10.9 ± 9.4, Pmax + bw: 8.8 ± 4.3, and C: 0.4 ± 6%). The HL-90% and the Pmax 2 bw group increased (p < 0.05) power output at loads of 20, 35, 50, 65, and 80% of 1RM and the Pmax + bw group at loads of 20 and 35% of 1RM. The inclusion or not of body mass to determine the load that maximizes mechanical power output affects the long-term adaptations differently in the load-power relationship. Thus, training load selection will depend on the required adaptations. However, the use of heavy loads causes greater overall neuromuscular adaptations in moderately trained individuals.
机译:这项研究研究了在阻力训练期后的最大强度,垂直跳跃性能以及负载速度和负载-功率关系的变化,该训练使用重负载和单个负载在不计算体重的情况下使机械功率输出最大化,从而使机械功率输出最大化。将43名受过中等训练的男人(年龄:22.7 6 2.5岁)分成4组,2组最大功率,1组在最大机械功率的负载计算中不包括体重(Pmax 2 bw,n = 11)和另一个计算中包括体重(Pmax + bw,n = 9),高负荷组(HL-90%,n = 12)和对照组(C,n = 11)。受试者进行了4-6套跳深蹲和重复跳跃练习,为期6周。对于跳下蹲,HL-90%组每组进行3次重复,负荷为1次重复最大值(1RM)的90%,Pmax 2 bw组进行5次重复,负荷为1RM的48-58%,Pmax + bw 8次重复,负载为1RM的20-37%。对于重复跳跃,所有组在每组进行6次重复。所有训练组均改善(p <0.05)半深蹲运动的最大力量(HL-90%:15.2±7.1,Pmax 2 bw:6.6±4.7,Pmax + bw:6.9±7.1,C:0 6 4.3%)和HL-90%组的值高于其他组(p <0.05)。所有训练组的下蹲幅度都有类似的改善(p <0.05)(HL-90%:11.7 6 7.9,Pmax 2 bw:14.5±11.8,Pmax + bw:11.3±7.9,C:22.2±5.5%)和反跳高度( HL-90%:8.6±7.9,Pmax 2 bw:10.9±9.4,Pmax + bw:8.8±4.3,C:0.4±6%)。 HL-90%和Pmax 2 bw组在1RM的负载的20%,35%,50%,65%和80%的负载下增加(p <0.05)功率输出,而Pmax + bw组在1RM的负载20和35%的负载下增加的功率输出(p <0.05) 。是否包含体重来确定使机械功率输出最大的负载,会影响负载功率关系中的长期适应性。因此,训练负荷的选择将取决于所需的适应性。但是,在中等程度训练的个体中,重负荷的使用会导致更大的总体神经肌肉适应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号