首页> 外文期刊>Computer physics communications >The role of computer technology in applied computational chemical-physics
【24h】

The role of computer technology in applied computational chemical-physics

机译:计算机技术在应用计算化学物理学中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we would discuss the increasing role played by the past and upcoming silicon technology in solving real computational applications' cases in correlated scientific fields ranging from quantum chemistry, materials science, atomic and molecular physics and bio-chemistry. Although the wide range of computational applications of computer technology in this areas does not permit to have a full rationale of its present and future role, some basic features appear to be so clearly defined that an attempt to find common numerical behaviours become now feasible to be exploited. Several theoretical approaches have been developed in order to study the state of bound and unbound interactions among physical particles with the scope of having a feasible numerical path to the solution of the equations proposed. apart from the evident scientific diversities among the cited computational fields, it is now becoming clear how they share common numerical devices, in terms of computer architectures, algorithms and low-level functions. This last fact, when coupled with the role of the numerical intensive technology provider who is committed to offer a computational solution to the needs of the scientific users on a common general-purpose computing platform, offers a unique way of analysis of the basic numeric requirements in this area. Some specific computational examples in classical and quantum mechanics of specific biochemistry and physics applications, will be reported in this paper and by the exposition of the basic elements of the theories involved, a discussion on the alternative to - and optimization of - the use of current parallel technologies will be opened. Whenever possible, a comparison between some numerical results obtained on general purpose mid-range parallel machines and forecasts from on silicon routines will be carried out in order to understand the viability of this solution to the (bio)chemical-physics computational community.
机译:在本文中,我们将讨论过去和即将来临的硅技术在解决相关科学领域(包括量子化学,材料科学,原子和分子物理以及生物化学)中的实际计算应用案例中所起的日益重要的作用。尽管计算机技术在该领域的广泛计算应用不允许对其当前和将来的作用有充分的理论依据,但一些基本特征似乎定义得如此清晰,以至于试图找到常见的数值行为现在变得可行。被利用。为了研究物理粒子之间的结合和未结合相互作用的状态,已经开发了几种理论方法,其范围是为提出的方程式的求解提供可行的数值路径。除了在引用的计算领域之间明显的科学差异之外,现在变得很清楚,它们在计算机体系结构,算法和低级功能方面如何共享常见的数字设备。最后一个事实,加上致力于在通用通用计算平台上为科学用户的需求提供计算解决方案的数值密集型技术提供商的角色,提供了一种分析基本数值需求的独特方法在这方面。本文将报告经典生物和物理应用的经典和量子力学中的一些具体计算示例,并通过阐述所涉理论的基本要素,讨论对电流使用的替代方法和优化方法的讨论。并行技术将开放。只要有可能,就将在通用中型并行机上获得的一些数值结果与硅例程的预测结果进行比较,以了解该解决方案对(生物)化学物理计算界的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号