首页> 外文期刊>Computer physics communications >Carbon nanotube structures: molecular dynamics simulation at realistic limit
【24h】

Carbon nanotube structures: molecular dynamics simulation at realistic limit

机译:碳纳米管结构:逼真的极限分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Single walled carbon nanotubes as all-carbon molecules of tubular form exemplify modern nanometre scale material structures, where the number of atoms range from less than a million up to few millions. Such system are quite ideal for computational studies like Molecular Dynamics simulations because the studies can be done at the realistic limit, rendering them in a way predictive. This point of view we try to explore through simulations of novel ring-like carbon nanotubes, observed experimentally. Whether these structures are toroidal or coiled is under debate. To this question we seek insight by studying the structure, the minimum energy configuration, and the thermal stability of large toroidal nanotubes of (n,n)- and (n,0)-helicity using large scale Molecular Dynamics simulations based on the interaction potential by Brenner. The system sizes of the studied tori range one and half orders of magnitude, in diameter from about 22 nm up to 700 nm, where the latter corresponds to the sizes of experimentally observed ring-like structures. Our simulations indicate that the toroidal form influences strongly the structures of the tubes for small tori while for the larger tori the structural changes are extremely small. We also find that there exists a critical tube radius dependent buckling radius at which the torus buckles. This was also found to be helicity dependent.
机译:作为管状形式的全碳分子的单壁碳纳米管是现代纳米级材料结构的例证,其中原子数范围从不到一百万到几百万。这样的系统非常适合诸如分子动力学模拟之类的计算研究,因为这些研究可以在现实的极限下进行,从而以预测的方式进行。基于这种观点,我们尝试通过实验观察到的新型环状碳纳米管的模拟进行探索。这些结构是环形的还是盘绕的仍在争论中。对于这个问题,我们通过使用基于相互作用势的大规模分子动力学模拟研究(n,n)-和(n,0)-螺旋的大型环形纳米管的结构,最小能量构型和热稳定性来寻求洞察力由布伦纳。研究的花托的系统尺寸范围为一个半个数量级,直径从约22 nm到700 nm,其中后者对应于实验观察到的环状结构的尺寸。我们的模拟表明,环形形式对小花托的管子结构有很大影响,而对于大花托的结构变化非常小。我们还发现存在一个与圆管屈曲的临界管半径相关的屈曲半径。还发现这是依赖于螺旋度的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号