...
首页> 外文期刊>Communications in computational physics >Plasma Edge Kinetic-MHD Modeling in Tokamaks Using Kepler Workflow for Code Coupling, Data Management and Visualization
【24h】

Plasma Edge Kinetic-MHD Modeling in Tokamaks Using Kepler Workflow for Code Coupling, Data Management and Visualization

机译:使用开普勒工作流在Tokamaks中进行等离子边缘动力学MHD建模以进行代码耦合,数据管理和可视化

获取原文
获取原文并翻译 | 示例
           

摘要

A new predictive computer simulation tool targeting the development of the H-mode pedestal at the plasma edge in tokamaks and the triggering and dynamics of edge localized modes (ELMs) is presented in this report. This tool brings together, in a coordinated and effective manner, several first-principles physics simulation codes,stability analysis packages, and data processing and visualization tools. A Kepler workflow is used in order to carry out an edge plasma simulation that loosely couples the kinetic code, XGCO, with an ideal MHD linear stability analysis code, ELITE, and an extended MHD initial value code such as M3D or NIMROD. XGCO includes the neoclassical ion-electron-neutral dynamics needed to simulate pedestal growth near the separatrix. The Kepler workflow processes the XGCO simulation results into simple images that can be selected and displayed via the Dashboard, a monitoring tool implemented in AJAX allowing the scientist to track computational resources, examine running and archived jobs, and view key physics data, all within a standard Web browser. The XGCO simulation is monitored for the conditions needed to trigger an ELM crash by periodically assessing the edge plasma pressure and current density profiles using the ELITE code. If an ELM crash is triggered, the Kepler workflow launches the M3D code on a moderate-size Opteron cluster to simulate the nonlinear ELM crash and to compute the relaxation of plasma profiles after the crash. This process is monitored through periodic outputs of plasma fluid quantities that are automatically visualized with AVS /Express and may be displayed on the Dashboard.Finally, the Kepler workflow archives all data outputs and processed images using HPSS, as well as provenance information about the software and hardware used to create the simulation. The complete process of preparing, executing and monitoring a coupled-code simulation of the edge pressure pedestal buildup and the ELM cycle using the Kepler scientific workflow system is described in this paper.
机译:本报告介绍了一种新的预测性计算机仿真工具,该工具针对托卡马克等离子边缘的H模式基座的发展以及边缘局部模式(ELM)的触发和动力学。该工具以协调有效的方式汇集了几个第一性原理物理模拟代码,稳定性分析包以及数据处理和可视化工具。开普勒工作流程用于执行边缘等离子体模拟,该模拟将动力学代码XGCO与理想的MHD线性稳定性分析代码ELITE以及扩展的MHD初始值代码(例如M3D或NIMROD)松散耦合。 XGCO包含了模拟在分离线附近的基座生长所需的新古典离子电子中性动力学。开普勒工作流程将XGCO模拟结果处理成简单的图像,然后可以通过仪表板选择和显示该仪表板,该仪表板是AJAX中实现的监视工具,使科学家可以跟踪计算资源,检查运行和存档的作业以及查看关键的物理数据。标准的Web浏览器。通过使用ELITE代码定期评估边缘等离子压力和电流密度曲线,可以监视XGCO模拟中触发ELM崩溃所需的条件。如果触发了ELM碰撞,开普勒工作流程将在中等大小的Opteron群集上启动M3D代码,以模拟非线性ELM碰撞并计算碰撞后等离子体轮廓的弛豫。该过程通过定期输出的血浆流体量进行监控,这些输出可以通过AVS / Express自动显示并可以显示在仪表板上。最后,开普勒工作流程使用HPSS归档所有数据输出和处理过的图像以及有关该软件的出处信息和用于创建仿真的硬件。本文描述了使用开普勒科学工作流程系统准备,执行和监视边缘压力基座堆积和ELM循环的耦合代码仿真的完整过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号