...
首页> 外文期刊>Biochemistry >Enthalpy-entropy compensation in biomolecular halogen bonds measured in DNA junctions
【24h】

Enthalpy-entropy compensation in biomolecular halogen bonds measured in DNA junctions

机译:DNA连接中测量的生物分子卤素键的焓-熵补偿

获取原文
获取原文并翻译 | 示例
           

摘要

Interest in noncovalent interactions involving halogens, particularly halogen bonds (X-bonds), has grown dramatically in the past decade, propelled by the use of X-bonding in molecular engineering and drug design. However, it is clear that a complete analysis of the structure-energy relationship must be established in biological systems to fully exploit X-bonds for biomolecular engineering. We present here the first comprehensive experimental study to correlate geometries with their stabilizing potentials for fluorine (F), chlorine (Cl), bromine (Br), or iodine (I) X-bonds in a biological context. For these studies, we determine the single-crystal structures of DNA Holliday junctions containing halogenated uracil bases that compete X-bonds against classic hydrogen bonds (H-bonds), estimate the enthalpic energies of the competing interactions in the crystal system through crystallographic titrations, and compare the enthalpic and entropic energies of bromine and iodine X-bonds in solution by differential scanning calorimetry. The culmination of these studies demonstrates that enthalpic stabilization of X-bonds increases with increasing polarizability from F to Cl to Br to I, which is consistent with the σ-hole theory of X-bonding. Furthermore, an increase in the X-bonding potential is seen to direct the interaction toward a more ideal geometry. However, the entropic contributions to the total free energies must also be considered to determine how each halogen potentially contributes to the overall stability of the interaction. We find that bromine has the optimal balance between enthalpic and entropic energy components, resulting in the lowest free energy for X-bonding in this DNA system. The X-bond formed by iodine is more enthalpically stable, but this comes with an entropic cost, which we attribute to crowding effects. Thus, the overall free energy of an X-bonding interaction balances the stabilizing electrostatic effects of the σ-hole against the competing effects on the local structural dynamics of the system.
机译:在过去的十年中,由于在分子工程和药物设计中使用X键,对涉及卤素,特别是卤素键(X键)的非共价相互作用的兴趣急剧增长。然而,很明显,必须在生物系统中建立对结构-能量关系的完整分析,以充分利用X键进行生物分子工程。我们在这里提出了第一个全面的实验研究,以将几何形状与它们在生物环境中的氟(F),氯(Cl),溴(Br)或碘(I)X-键的稳定潜力相关联。在这些研究中,我们确定了DNA霍利迪结的单晶结构,其中包含与X键竞争经典氢键(H键)的卤化尿嘧啶碱基,并通过晶体学滴定估算晶体系统中竞争相互作用的焓能,并通过差示扫描量热法比较了溶液中溴和碘X键的焓能和熵能。这些研究的高潮表明,X键的焓稳定度随着从F到Cl到Br到I的极化率的增加而增加,这与X键的σ孔理论一致。此外,可以看到X键电位的增加将相互作用导向更理想的几何形状。但是,还必须考虑熵对总自由能的贡献,以确定每种卤素如何潜在地影响相互作用的整体稳定性。我们发现,溴在焓和熵能成分之间具有最佳平衡,从而导致该DNA系统中X键的自由能最低。碘形成的X键在焓上更稳定,但这带来了熵成本,我们将其归因于拥挤效应。因此,X键相互作用的总自由能平衡了σ孔的稳定静电效应和对系统局部结构动力学的竞争效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号