首页> 外文期刊>Chemistry: A European journal >Synthesis and study of plasmon-induced carrier behavior at Ag/TiO _2 nanowires
【24h】

Synthesis and study of plasmon-induced carrier behavior at Ag/TiO _2 nanowires

机译:等离子体在Ag / TiO _2纳米线上诱导载流子行为的合成与研究

获取原文
获取原文并翻译 | 示例
           

摘要

Nanocomposites of Ag/TiO _2 nanowires with enhanced photoelectrochemical performance have been prepared by a facile solvothermal synthesis of TiO _2 nanowires and subsequent photoreduction of Ag ~+ ions to Ag nanoparticles (AgNPs) on the TiO _2 nanowires. The as-prepared nanocomposites exhibited significantly improved cathodic photocurrent responses under visible-light illumination, which is attributed to the local electric field enhancement of plasmon resonance effect near the TiO _2 surface rather than by the direct transfer of charge between the two materials. The visible-light-driven photocatalytic performance of these nanocomposites in the degradation of methylene blue dye was also studied, and the observed improvement in photocatalytic activity is associated with the extended light absorption range and efficient charge separation due to surface plasmon resonance effect of AgNPs. Success with silver: Nanocomposites of Ag/TiO _2 nanowires have been prepared by a facile solvothermal synthesis of TiO _2 nanowires and subsequent photoreduction of Ag ~+ ions to Ag nanoparticles on the TiO _2 nanowires (see figure). The nanocomposites exhibit significantly improved cathodic photocurrent responses under visible-light illumination due to the local electric field enhancement of the plasmon resonance effect near the TiO _2 surface.
机译:通过简便的溶剂热合成TiO _2纳米线并随后将Ag〜+离子光还原为TiO _2纳米线上的Ag〜+离子,制备出具有增强的光电化学性能的Ag / TiO _2纳米线纳米复合材料。所制备的纳米复合材料在可见光照射下显示出显着改善的阴极光电流响应,这归因于TiO _2表面附近的等离子体激元共振效应的局部电场增强,而不是由于两种材料之间电荷的直接转移。还研究了这些纳米复合材料在亚甲基蓝染料降解中的可见光驱动光催化性能,并且由于AgNPs的表面等离振子共振效应,观察到的光催化活性的改善与扩展的光吸收范围和有效的电荷分离有关。银的成功:通过便捷的溶剂热合成TiO _2纳米线并随后在TiO _2纳米线上将Ag〜+离子光还原为Ag纳米粒子,制备了Ag / TiO _2纳米线的纳米复合材料(见图)。由于在TiO _2表面附近的等离子体激元共振效应的局部电场增强,纳米复合材料在可见光照射下显示出显着改善的阴极光电流响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号