首页> 外文期刊>Chemistry: A European journal >Super Sensitization: Grand Charge (Hole/Electron) Separation in ATC Dye Sensitized CdSe, CdSe/ZnS Type-I, and CdSe/CdTe Type-II Core-Shell Quantum Dots
【24h】

Super Sensitization: Grand Charge (Hole/Electron) Separation in ATC Dye Sensitized CdSe, CdSe/ZnS Type-I, and CdSe/CdTe Type-II Core-Shell Quantum Dots

机译:超敏化:ATC染料敏化的CdSe,I型CdSe / ZnS和II型CdSe / CdTe CdSe / CdTe核壳量子点中的大电荷(孔/电子)分离

获取原文
获取原文并翻译 | 示例
       

摘要

Ultrafast charge-transfer dynamics has been demonstrated in CdSe quantum dots (QD), CdSe/ZnS type-l core-shell, and CdSe/CdTe type-ll core-shell nanocrystals after sensitizing the QD materials by aurin tricarboxylic acid (ATC), in which CdSe QD and ATC form a charge-transfer complex. Energy level diagrams suggest that the conduction and valence band of CdSe lies below the LUMO and the HOMO level of ATC, respectively, thus signifying that the photoexcited hole in CdSe can be transferred to ATC and that photoexcited ATC can inject electrons into CdSe QD, which has been confirmed by steady state and time-resolved luminescence studies and also by femtosecond time-resolved absorption measurements. The effect of shell materials (for both type-l and type-ll) on charge-transfer processes has been demonstrated. Electron injection in all the systems were measured to be <150 fs. However, the hole transfer time varied from 900 fs to 6 ps depending on the type of materials. The hole-transfer process was found to be most efficient in CdSe QD. On the other hand, it has been found to be facilitated in CdSe/CdTe type-ll and retarded in CdSe/ ZnS type-l core-shell materials. Interestingly, electron injection from photoexcited ATC to both CdSe/CdTe type-ll and CdSe/ZnS type-l core-shell has been found to be more efficient as compared to pure CdSe QD. Our observation suggests the potential of quantum dot core-shell super sensitizers for developing more efficient quantum dot solar cells.
机译:在通过Aurin三羧酸(ATC)敏化QD材料之后,CdSe量子点(QD),CdSe / ZnS-l型核-壳和CdSe / CdTe-II型核-壳纳米晶体已证明了超快电荷转移动力学,其中CdSe QD和ATC形成电荷转移复合物。能级图表明CdSe的导带和价带分别低于ATC的LUMO和HOMO能级,因此表明CdSe中的光激发空穴可以转移到ATC上,而光激发的ATC可以将电子注入CdSe QD中,稳态和时间分辨的发光研究以及飞秒时间分辨的吸收测量已证实了这一点。已经证明了壳材料(对于I型和II型)对电荷转移过程的影响。测量所有系统中的电子注入<150 fs。但是,空穴传输时间从900 fs到6 ps不等,具体取决于材料的类型。发现空穴转移过程在CdSe QD中最有效。另一方面,已经发现在CdSe / CdTe-II型中促进并且在CdSe / ZnS-I型核-壳材料中延迟。有趣的是,与纯CdSe QD相比,已经发现从光激发ATC向CdSe / CdTe II型和CdSe / ZnS I型核-壳两者注入电子更有效。我们的观察结果表明,量子点核壳超敏化剂具有开发更高效的量子点太阳能电池的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号