首页> 外文期刊>Contributions to Mineralogy and Petrology >Carbon-saturated monosulfide melting in the shallow mantle: solubility and effect on solidus
【24h】

Carbon-saturated monosulfide melting in the shallow mantle: solubility and effect on solidus

机译:碳饱和一硫化物在浅地幔中的熔融:溶解度及其对固相线的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We present high-pressure experiments from 0.8 to 7.95 GPa to determine the effect of carbon on the solidus of mantle monosulfide. The graphite-saturated solidus of monosulfide (Fe0.69Ni0.23Cu0.01S1.00) is described by a Simon and Glatzel (Z Anorg Allg Chem 178:309-316, 1929) equation T (degrees C) = 969.0[P (GPa)/5.92 + 1](0.39) (1 <= P <= 8) and is similar to 80 +/- 25 degrees C below the melting temperature found for carbon-free conditions. A series of comparison experiments using different capsule configurations and preparations document that the observed solidus-lowering is owing to graphite saturation and not an artifact of different capsules or hydrogen contamination. Concentrations of carbon in quenched graphite-saturated monosulfide melt measured by electron microprobe are 0.1-0.3 wt% in monosulfide melt and below the detection limit (<0.2 wt%) in crystalline monosulfide solid solution. Although there is only a small amount of carbon dissolved in monosulfide melts, the substantial effect on monosulfide solidus temperature means that the carbon-saturated monosulfide (Fe0.69Ni0.23Cu0.01S1.00) solidus intersects continental mantle geotherms inferred from diamond inclusion geobarometry at 6-7 GPa (similar to 200 km), whereas carbon-free monosulfide (Fe0.69Ni0.23Cu0.01S1.00) solidus does not. The composition investigated (Fe0.69Ni0.23Cu0.01S1.00) has a comparatively low metal/sulfur (M/S) ratio and low Ni/(Fe + Ni), but sulfides with higher (M/S) and with greater Ni/(Fe + Ni) should melt at lower temperatures and these should have a broader melt stability field in the diamond formation environment and in the continental lithosphere. Low carbon solubility in monosulfide melt excludes the possibility that diamonds are crystallized from sulfide melt. Although monosulfide melt can store no more than 2 ppm C in a bulk mantle with 225 ppm S, melts with higher M/S could be a primary host of carbon in the deeper part of the upper mantle. For example, the storage capacity of C in sulfide melts in the deep upper mantle (similar to 400 km) for a depleted mantle domain (MORB source, 120 +/- 30 ppm S) is estimated to be 57 +/-(63)(30) ppm, and so all the C could be in a sulfide melt. In an enriched (OIB source, 225 +/- 25 ppm S) mantle domain, the C stored in sulfide melt in the deep upper mantle is estimated to be 86 +/-(92)(44) ppm, which would amount to about half the available carbon.
机译:我们目前在0.8至7.95 GPa的高压实验中确定碳对地幔单硫化物固相的影响。用Simon和Glatzel(Z Anorg Allg Chem 178:309-316,1929)方程T(摄氏度)= 969.0 [P(GPa)描述一硫化物的石墨饱和固相线(Fe0.69Ni0.23Cu0.01S1.00) )/5.92 + 1](0.39)(1 <= P <= 8),类似于在无碳条件下的熔融温度以下80 +/- 25摄氏度。使用不同的胶囊配置和制备方法进行的一系列比较实验表明,观察到的固相线降低是由于石墨饱和,而不是由于不同的胶囊或氢污染造成的。通过电子探针测量的淬火的石墨饱和的单硫化物熔体中的碳浓度在单硫化物熔体中为0.1-0.3 wt%,并且在结晶的单硫化物固溶体中低于检测极限(<0.2 wt%)。尽管单硫化物熔体中只有少量碳溶解,但是对单硫化物固相线温度的实质影响意味着碳饱和的单硫化物(Fe0.69Ni0.23Cu0.01S1.00)固相线与根据金刚石包裹体气压计推断的地幔地热相交。 6-7 GPa(大约200 km),而无碳单硫化物(Fe0.69Ni0.23Cu0.01S1.00)固相线则没有。所研究的成分(Fe0.69Ni0.23Cu0.01S1.00)具有较低的金属/硫(M / S)比和较低的Ni /(Fe + Ni),但硫化物具有较高的(M / S)和较高的Ni /(Fe + Ni)应当在较低的温度下熔化,并且在金刚石形成环境和大陆岩石圈中应该具有更宽的熔化稳定性场。一硫化物熔体中的低碳溶解度排除了钻石从硫化物熔体中结晶的可能性。尽管单硫化物熔体在含225 ppm S的块状地幔中可存储的碳含量不超过2 ppm,但具有较高M / S的熔体可能是上地幔较深部分的主要碳源。例如,对于地幔贫化区域(MORB源,120 +/- 30 ppm S),深部上地幔(约400 km)中硫化物熔体中C的储存容量估计为57 +/-(63) (30)ppm,因此所有的C都可能处于硫化物熔体中。在富氧(OIB源,225 +/- 25 ppm S)地幔域中,深部上地幔中硫化物熔体中储存的碳估计为86 +/-(92)(44)ppm,约等于可用碳的一半。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号