...
首页> 外文期刊>ACS applied materials & interfaces >Interfacial Chemical Composition and Molecular Order in Organic Photovoltaic Blend Thin Films Probed by Surface-Enhanced Raman Spectroscopy
【24h】

Interfacial Chemical Composition and Molecular Order in Organic Photovoltaic Blend Thin Films Probed by Surface-Enhanced Raman Spectroscopy

机译:表面增强拉曼光谱探测有机光伏混合薄膜的界面化学组成和分子有序

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Organic electronic devices invariably involve transfer of charge carriers between the organic layer and at least one metal electrode, and they are sensitive to the local properties of the organic film at those interfaces. Here, we demonstrate a new approach for using an advanced technique called surface-enhanced raman spectroscopy (SERS) to quantitatively probe interfacial properties relevant to charge injection/extraction. Exploiting the evanescent electric field generated by a similar to 7 nm thick layer of evaporated silver, Raman scattering from nearby molecules is enhanced by factors of 10-1000x and limited by a distance dependence with a measured decay length of only 7.6 nm. When applied to the study of an all polymer 1:1 blend of P3HT and F8TBT used in organic solar cells, we find that the as-cast film is morphologically suited to charge extraction in inverted devices, with a top (anode) interface very rich in hole-transporting P3HT (74.5%) and a bottom (cathode) interface slightly rich in electron-transporting F8TBT (55%). While conventional, uninverted P3HT:F8TBT devices are reported to perform poorly compared to inverted devices, their efficiency can be improved by thermal annealing but only after evaporation of a metallic top electrode. This is explained by changes in composition at the top interface: annealing prior to silver evaporation leads to a greater P3HT concentration at the top interface to 83.3%, exaggerating the original distribution that favored inverted devices, while postevaporation annealing increases the concentration of F8TBT at the top interface to 34.8%, aiding the extraction of electrons in a conventional device. By nondestructively probing buried interfaces, SERS is a powerful tool for understanding the performance of organic electronic devices.
机译:有机电子器件总是涉及在有机层和至少一个金属电极之间转移载流子,并且它们对有机膜在那些界面处的局部性质敏感。在这里,我们演示了一种使用称为表面增强拉曼光谱(SERS)的先进技术来定量探测与电荷注入/萃取有关的界面性质的新方法。利用由类似于7 nm厚的蒸发银层产生的van逝电场,附近分子的拉曼散射增强了10-1000x,并且受距离依赖性的限制,测得的衰减长度仅为7.6 nm。当用于有机太阳能电池中P3HT和F8TBT的所有聚合物1:1混合物的研究时,我们发现铸态膜在形态上适合倒置器件中的电荷提取,其顶部(阳极)界面非常丰富空穴传输的P3HT(74.5%)和底部(阴极)界面中的电子传输F8TBT(55%)稍富。尽管传统的非倒置P3HT:F8TBT器件与倒置器件相比性能较差,但可以通过热退火提高其效率,但只能在蒸发金属顶电极之后才能提高效率。这可以通过顶部界面的成分变化来解释:在银蒸发之前进行退火会导致顶部界面处的P3HT浓度更高,达到83.3%,夸大了有利于倒置器件的原始分布,而蒸发后退火则提高了F8TBT的浓度。顶部界面达到34.8%,有助于传统设备中的电子提取。通过非破坏性地探测掩埋接口,SERS是了解有机电子设备性能的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号