...
首页> 外文期刊>Analytical chemistry >Computational Analysis of Microfluidic Immunomagnetic Rare Cell Separation from a Particulate Blood Flow
【24h】

Computational Analysis of Microfluidic Immunomagnetic Rare Cell Separation from a Particulate Blood Flow

机译:微粒血流中微流控免疫稀有细胞分离的计算分析

获取原文
获取原文并翻译 | 示例
           

摘要

We describe a computational analysis method to evaluate the efficacy of immunomagnetic rare cell separation from non-Newtonian particulate blood flow. The core procedure proposed here is calculation of local viscosity distributions induced by red blood cell (RBC) sedimentation. Numerical calculation methods have previously been introduced to simulate particulate behavior of individual RBCs. However, due to the limitation of the computational power, those studies are typically capable of calculating only a very small number (less than 100) of RBCs and are not suitable to analyze many practical separation methods for rare cells such as circulating tumor cells (CTCs). We introduce a sedimentation and viscosity model based on our experimental measurements. The computational field is divided into small unit control volumes, where the local viscosity distribution is dynamically calculated based on the experimentally found sedimentation model. For analysis of rare cell separation, the local viscosity distribution is calculated as a function of the volume RBC rate. The direction of gravity has an important role in such a sedimentation-involved cell separation system. We evaluated the separation efficacy with multiple design parameters including the channel design, channel operational orientations (inverted and upright), and flow rates. The results showed excellent agreement with real experiments to demonstrate the effectiveness of our computational analytical method. We demonstrated higher capture efficiency with the inverted microchannel configuration.We conclude that proper direction of blood sedimentation significantly enhances separation efficiency in microfluidic devices.
机译:我们描述了一种计算分析方法,以评估从非牛顿颗粒血流中分离免疫磁性稀有细胞的功效。这里提出的核心程序是计算由红细胞(RBC)沉降引起的局部粘度分布。以前已经引入了数值计算方法来模拟单个RBC的颗粒行为。但是,由于计算能力的限制,这些研究通常仅能计算很少(少于100个)RBC,并且不适合分析稀有细胞(例如循环肿瘤细胞(CTC))的许多实用分离方法)。我们基于实验测量结果介绍了沉降和粘度模型。计算区域分为小单元控制体积,其中根据实验发现的沉降模型动态计算局部粘度分布。为了分析稀少的细胞,将局部粘度分布计算为体积红细胞速率的函数。重力方向在这种涉及沉淀的细胞分离系统中具有重要作用。我们使用多个设计参数(包括通道设计,通道操作方向(倒置和竖直)和流速)评估了分离效果。结果表明,与真实实验完全吻合,证明了我们的计算分析方法的有效性。我们证明了倒置微通道配置具有更高的捕获效率。我们得出的结论是,正确的血液沉淀方向可以显着提高微流控设备的分离效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号