首页> 外文期刊>Applied optics >Distribution of electric field and energy flux around the cracks on the surfaces of Nd-doped phosphate glasses
【24h】

Distribution of electric field and energy flux around the cracks on the surfaces of Nd-doped phosphate glasses

机译:掺钕磷酸盐玻璃表面裂纹周围的电场和能量通量分布

获取原文
获取原文并翻译 | 示例
           

摘要

We simulate and calculate numerically the electromagnetic field and energy flux around a surface crack of an Nd-doped phosphate laser glass by using the finite-difference time-domain method. Because of a strong interference between the incident wave and the total internal reflections from the crack and the glass surface, the electric field is redistributed and enhanced. The results show that the electric-field distribution and corresponding energy flux component depend sensitively on the light polarization and crack geometry, such as orientation and depth. The polarization of the incident laser beam relative to the crack surfaces will determine the profile of the electric field around the crack. Under TE wave incidence, the energy flux peak is always inside the glass. But under TM wave incidence, the energy flux peak will be located inside the glass or inside the air gap. For both incident modes, the light intensification factor increases with the crack depth, especially for energy flux along the surface. Because cracks on the polished surfaces are the same as the roots extending down, the probability for much larger intensification occurring is high. The results suggest that the surface laser-damage threshold of Nd-doped phosphate may decrease dramatically with subsurface damage.
机译:我们使用时域有限差分法,对掺钕磷酸盐激光玻璃表面裂纹周围的电磁场和能量通量进行了数值模拟和计算。由于入射波与来自裂纹和玻璃表面的全内反射之间的强干扰,电场被重新分配和增强。结果表明,电场分布和相应的能量通量分量敏感地取决于光的偏振和裂纹的几何形状,例如取向和深度。入射激光束相对于裂纹表面的偏振将确定裂纹周围电场的分布。在TE波入射下,能量通量峰值始终位于玻璃内部。但是在TM波入射下,能量通量峰值将位于玻璃内部或气隙内部。对于两种入射模式,光强度因子都随着裂纹深度的增加而增加,尤其是沿表面的能量通量。因为抛光表面上的裂纹与向下延伸的根部相同,所以发生更大强度的可能性很高。结果表明,Nd掺杂磷酸盐的表面激光损伤阈值可能随着地下损伤而显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号