首页> 外文期刊>Applied optics >Accurate temperature model for absorptance determination of optical components with laser calorimetry
【24h】

Accurate temperature model for absorptance determination of optical components with laser calorimetry

机译:激光量热法测定光学元件的吸收率的精确温度模型

获取原文
获取原文并翻译 | 示例
           

摘要

In the international standard (International Organization for Standardization 11551) for measuring the absorptance of optical components (i.e., laser calorimetry), the absorptance is obtained by fitting the temporal behavior of laser irradiation-induced temperature rise to a homogeneous temperature model in which the infinite thermal conductivity of the sample is assumed. In this paper, an accurate temperature model, in which both the finite thermal conductivity and size of the sample are taken into account, is developed to fit the experimental temperature data for a more precise determination of the absorptance. The difference and repeatability of the results fitted with the two theoretical models for the same experimental data are compared. The optimum detection position when the homogeneous model is employed in the data-fitting procedure is also analyzed with the accurate temperature model. The results show that the optimum detection location optimized for a wide thermal conductivity range of 0.2-50 W/m (centre dot) K moves toward the center of the sample as the sample thickness increases and deviates from the center as the radius and irradiation time increase. However, if the detection position is optimized for an individual sample with known sample size and thermal conductivity by applying the accurate temperature model, the influence of the finite thermal conductivity and sample size on the absorptance determination can be fully compensated for by fitting the temperature data recorded at the optimum detection position to the homogeneous temperature model.
机译:在用于测量光学组件的吸收率的国际标准(国际标准化组织11551)(即激光量热法)中,吸收率是通过将激光辐照引起的温度上升的时间行为拟合到均匀温度模型中获得的,其中假设样品的热导率。在本文中,开发了一个精确的温度模型,其中考虑了有限的热导率和样品的大小,以拟合实验温度数据,以更精确地确定吸收率。比较了针对相同实验数据使用两种理论模型拟合的结果的差异和可重复性。还使用精确的温度模型分析了在数据拟合过程中采用均质模型时的最佳检测位置。结果表明,随着样品厚度的增加,在0.2-50 W / m(中心点)K的较宽导热系数范围内进行优化的最佳检测位置朝着样品中心移动,随着半径和照射时间的偏离而偏离中心增加。但是,如果通过应用精确的温度模型针对具有已知样品大小和导热率的单个样品优化检测位置,则可以通过拟合温度数据来完全补偿有限的导热率和样品大小对吸收率测定的影响。记录在均质温度模型的最佳检测位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号