首页> 外文期刊>Applied optics >3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system
【24h】

3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system

机译:基于相移算法的荧光分子层析成像系统3D鼠标形状重建

获取原文
获取原文并翻译 | 示例
           

摘要

This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2 pi/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach. (C) 2015 Optical Society of America
机译:这项工作介绍了一种基于条纹图案和相移的快速,低成本,强大的方法,以获得用于荧光分子层析成像(FMT)成像的三维(3D)鼠标表面几何形状。我们使用了两个微型投影仪/网络摄像头对,以从不同的视角投射和捕获条纹图案。我们首先校准了微型投影仪和网络摄像头,以获取其系统参数。每个微型投影仪/网络摄像机对都有自己的坐标系。我们使用圆柱校准条来计算这两个坐标系之间的转换矩阵。之后,微型投影仪将9个条纹图案以2 pi / 9的相移步长投影到鼠标形幻影的表面上。变形的条纹图案分别由相应的网络摄像头捕获,然后用于构造两个相位图,然后将其进一步转换为由分散点组成的两个3D表面。将两个3D点云与变换矩阵进一步合并为一个。表面提取过程花费不到30秒。最后,我们使用Digiwarp方法将标准Digimouse扭曲到被测表面中。所提出的方法可以以0.5毫米的精度重建鼠标大小的物体的表面,我们认为这足以获得用于FMT成像的有限元网格。我们使用带有一个嵌入式荧光毛细管靶标的小鼠形幻影进行了FMT实验。通过变形的有限元网格,我们成功地重建了目标,从而验证了我们的表面提取方法。 (C)2015年美国眼镜学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号