首页> 外文期刊>Electrochimica Acta >Nickel and nitrogen co-doped tin dioxide nano-composite as a potential anode material for lithium-ion batteries
【24h】

Nickel and nitrogen co-doped tin dioxide nano-composite as a potential anode material for lithium-ion batteries

机译:镍和氮共掺杂的二氧化锡纳米复合材料,可作为锂离子电池的负极材料

获取原文
获取原文并翻译 | 示例
           

摘要

As a promising high capacity anode material for lithium-ion batteries (LIBs), tin dioxide (SnO_2) has attracted considerable interest in recent studies. In this paper, nickel-doped tin dioxide (Ni/SnO_2), nickel and nitrogen co-doped tin dioxide (Ni-N/SnO_2) are prepared to modify the electrochemical properties of as-prepared SnO_2. Samples of pure SnO_2, Ni/SnO_2 and Ni-N/SnO_2 are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDAX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). It is found that doping and co-doping process does not affect the phase structure of pristine SnO_2. However, it obviously influences the morphology, specific surface area, and electrochemical properties of SnO_2. Gavalnostatic cycling indicates that the Ni-N/SnO_2 nano-composite still remains a high charge capacity of 631 mAh g~(-1) after 50 cycles. Rate performance evaluation shows that a capacity of 621 mAh g~(-1) can still be delivered when the current returns back to 0.1 C after 50 cycles at different current densities. Cyclic voltammetry (CV) analysis proves that Ni and N co-doping accelerates the electrode reaction. The results of electrochemical impedance spectroscopy (EIS) demonstrate the low charge-transfer resistance for Ni-N/SnO_2, and the following quantitative calculation further confirms the highest electric conductivity and ionic conductivity of Ni-N/SnO_2 compared with those of pure SnO_2 and Ni/SnO_2. This explains the superior capacity retention and rate performance of co-doped material.
机译:作为用于锂离子电池(LIB)的有前途的高容量阳极材料,二氧化锡(SnO_2)在最近的研究中引起了相当大的兴趣。本文制备了镍掺杂的二氧化锡(Ni / SnO_2),镍和氮共掺杂的二氧化锡(Ni-N / SnO_2),以改变所制备的SnO_2的电化学性能。通过X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和高分辨率透射电子显微镜(HRTEM),能量色散X射线分析对纯SnO_2,Ni / SnO_2和Ni-N / SnO_2样品进行表征(EDAX),拉曼光谱,X射线光电子能谱(XPS)和Brunauer-Emmett-Teller(BET)。发现掺杂和共掺杂过程不影响原始SnO_2的相结构。然而,它明显影响了SnO_2的形貌,比表面积和电化学性能。静电流循环表明,Ni-N / SnO_2纳米复合材料经过50个循环后仍保持631 mAh g〜(-1)的高充电容量。速率性能评估表明,在不同的电流密度下,经过50个循环后电流恢复到0.1 C时,仍可以提供621 mAh g〜(-1)的容量。循环伏安法(CV)分析证明,镍和氮共掺杂可加速电极反应。电化学阻抗谱(EIS)的结果表明Ni-N / SnO_2的电荷转移电阻低,下面的定量计算进一步证实了Ni-N / SnO_2的电导率和离子电导率比纯SnO_2和SnO_2高。 Ni / SnO_2。这解释了共掺杂材料的优异的容量保持率和速率性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号