首页> 外文期刊>Nanotechnology >Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO_2, NiO and Pr _(0.7)Ca_(0.3)MnO_3
【24h】

Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO_2, NiO and Pr _(0.7)Ca_(0.3)MnO_3

机译:包含过渡金属氧化物:TiO_2,NiO和Pr _(0.7)Ca_(0.3)MnO_3的随机存取存储设备中的电阻切换机制

获取原文
获取原文并翻译 | 示例
           

摘要

Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e.how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art abinitio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO_2 and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr_(0.7)Ca _(0.3)MnO_3 devices based on electrical characterization and FTIR measurements.
机译:通常构造为MIM电容器结构的电阻变化随机存取存储器(RRAM)单元由夹在金属层M之间的绝缘层I组成,其中绝缘体执行电阻切换操作。这些器件可以以纳秒的速度在两个或更多个稳定的电阻状态之间进行电切换,具有较长的保留时间,较高的开关耐力,较低的读取电压和较大的开关窗口。它们是下一代非易失性存储器的有吸引力的候选者,特别是作为闪存后继者,因为其材料特性可以缩放到纳米级。迄今为止,已经提出了几种基于过渡金属氧化物的器件的电阻切换模型,例如电荷俘获,导电丝形成,肖特基势垒调制和点缺陷的电化学迁移。开关机制的基本原理仍然缺乏详细的理解,即如何控制和调制结合了缺陷和杂质(例如氧空位,金属间隙,氢和充当掺杂剂的其他金属原子)的器件的电气特性。在本文中,采用最新的理论方法来了解TiO_2和NiO中的稳定氧空位构型的丝状类型对电子传导的影响。结果表明,与氧空位相邻的金属离子之间的强电子相互作用导致形成导电路径,因此可以解释这些材料中的“ ON”位传导。基于电特性和FTIR测量,讨论了Pr_(0.7)Ca _(0.3)MnO_3器件中氢掺杂对电铸的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号