首页> 外文期刊>Nanotechnology >Nanofiltration and sensing of picomolar chemical residues in aqueous solution using an optical porous resonator in a microelectrofluidic channel
【24h】

Nanofiltration and sensing of picomolar chemical residues in aqueous solution using an optical porous resonator in a microelectrofluidic channel

机译:使用微电流体通道中的光学多孔共振器对水溶液中的皮摩尔化学残留物进行纳滤和感测

获取原文
获取原文并翻译 | 示例
           

摘要

For the first time the use of a porous microresonator placed in a microelectrofluidic system for integrated functions of nanofiltration and sensing of small biomolecules and chemical analytes in extremely dilute solution was proposed and investigated. As an example, aminoglycosides in drug residues in food and livestock products were considered as the trace chemical analyte. The filtration process of the charged analyte in aqueous solution driven by an applied electrical field and the accompanying optical whispering-gallery modes in the resonator are modeled. The dynamic process of adsorption and desorption of the analyte onto the porous matrix is studied. Deposition of the analyte inside the porous structure will alter the material refractive index of the resonator, and thus induce an optical resonance frequency shift. By measuring the optical frequency shift, the analyte concentration as well as the absorption/desorption process can be analyzed. Through an intensive numerical study, a correlation between the frequency shift and the analyte concentration and the applied electrical voltage gradient was obtained. This reveals a linear relationship between the resonance frequency shift and the analyte concentration. The applied electrical voltage substantially enhances the filtration capability and the magnitude of the optical frequency shift, pushing the porous resonator-based sensor to function at the extremely dilute picomolar concentration level for small bio/chemical molecules down to the sub-nanometer scale. Moreover, use of the second-order whispering-gallery mode is found to provide better sensitivity compared with the first-order mode.
机译:首次提出并研究了将微微流体系统中的多孔微谐振器用于纳米过滤的综合功能以及在极稀溶液中感测小生物分子和化学分析物的功能。例如,食品和畜产品中药物残留中的氨基糖苷被视为痕量化学分析物。对由施加的电场驱动的水溶液中带电分析物的过滤过程以及谐振器中伴随的光学耳语-画廊模式进行了建模。研究了分析物在多孔基质上吸附和解吸的动态过程。分析物在多孔结构内部的沉积将改变谐振器的材料折射率,从而引起光学谐振频率偏移。通过测量光频移,可以分析分析物的浓度以及吸收/解吸过程。通过深入的数值研究,获得了频移和分析物浓度与施加的电压梯度之间的相关性。这揭示了共振频率偏移与分析物浓度之间的线性关系。施加的电压大大增强了过滤能力和光频移的幅度,推动了基于多孔共振器的传感器在极低的皮摩尔浓度水平下发挥作用,可将小生物/化学分子降至亚纳米级。而且,发现与二阶耳语画廊模式相比,二阶耳语画廊模式的使用提供了更好的灵敏度。

著录项

  • 来源
    《Nanotechnology》 |2012年第6期|共10页
  • 作者

    Huang L.; Guo Z.;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号