首页> 外文期刊>Nanotechnology >Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion
【24h】

Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion

机译:铁蛋白中的非天然Co-,Mn-和Ti-羟基氢氧化物纳米晶体用于高效太阳能转换

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.
机译:量子点太阳能电池试图超越大块半导体实现的太阳能转换效率。这个新领域需要广泛的材料选择,以充分发挥其潜力。 12 nm球形蛋白质铁蛋白可以用作模板,用于均匀且受控的纳米晶体生长,然后容纳纳米晶体以用于太阳能转换。在这项研究中,测量了铁蛋白中钛,钴和羟基氧化锰纳米晶体的精确带隙,并观察到由于量子限制效应引起的带隙变化。从这三种类型的纳米晶体可获得的带隙范围分别为2.19-2.29eV,1.93-2.15eV和1.60-1.65eV。根据这些测得的带隙,计算出使用这些铁蛋白封闭的纳米晶体的多结太阳能电池的理论效率极限,发现未浓缩的太阳光为38.0%,最大浓缩的太阳光为44.9%。如果可以发现带隙类似于硅的铁蛋白基纳米晶体(即1.12 eV),则理论效率极限分别提高到51.3%和63.1%。对于电流匹配的电池,对于未聚光的太阳光和最大聚光的太阳光,后者的效率分别为41.6%(工作电压为5.49 V)和50.0%(工作电压为6.59 V)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号