首页> 外文期刊>Nanotechnology >Plasmonic nanograting enhanced quantum dots excitation for cellular imaging on-chip
【24h】

Plasmonic nanograting enhanced quantum dots excitation for cellular imaging on-chip

机译:等离子纳米光栅增强量子点激发的片上细胞成像

获取原文
获取原文并翻译 | 示例
           

摘要

We present the design and integration of a two-dimensional (2D) plasmonic nanogratings structure on the electrode of colloidal quantum dot-based light-emitting diodes (QDLEDs) as a compact light source towards arrayed on-chip imaging of tumor cells. Colloidal quantum dots (QDs) were used as the emission layer due to their unique capabilities, including multicolor emission, narrow bandwidth, tunable emission wavelengths, and compatibility with silicon fabrication. The nanograting, based on a metal-dielectric-metal plasmonic waveguide, aims to enhance the light intensity through the resonant reflection of surface plasmon (SP) waves. The key parameters of plasmonic nanogratings, including periodicity, slit width, and thicknesses of the metal and dielectric layers, were designed to tailor the frequency bandgap such that it matches the wavelength of operation. We fabricated QDLEDs with the integrated nanogratings and demonstrated an increase in electroluminescence intensity, measured along the direction perpendicular to the metal electrode. We found an increase of 34.72% in QDLED electroluminescence intensity from the area of the pattern and an increase of 32.63% from the photoluminescence of QDs deposited on a metal surface. We performed ex vivo transmission-mode microscopy to evaluate the nucleus-cytoplasm ratios of MDA-MB 231 cultured breast cancer cells using QDLEDs as the light source. We showed wavelength dependent imaging of different cell components and imaging of cells at higher magnification using enhanced emission from QDLEDs with integrated plasmonic nanogratings.
机译:我们目前在胶体量子点基发光二极管(QDLED)的电极上的二维(2D)等离子体纳米光栅结构的设计和集成,作为一种紧凑的光源,朝向肿瘤细胞的阵列芯片成像。胶体量子点(QD)由于其独特的功能而被用作发射层,包括多色发射,窄带宽,可调发射波长以及与硅制造的兼容性。基于金属-电介质-金属等离激元波导的纳米光栅旨在通过表面等离激元(SP)波的共振反射来提高光强度。等离子纳米光栅的关键参数,包括周期性,狭缝宽度以及金属层和介电层的厚度,被设计为可调整频带隙,使其与工作波长相匹配。我们制造了具有集成纳米光栅的QDLED,并证明了沿垂直于金属电极的方向测量的电致发光强度的增加。我们发现,QDLED电致发光强度从图案区域增加了34.72%,从沉积在金属表面的QD的光致发光增加了32.63%。我们进行了离体透射模式显微镜检查,以使用QDLEDs作为光源评估MDA-MB 231培养的乳腺癌细胞的细胞核质比。我们展示了不同细胞成分的波长依赖性成像,以及使用集成等离激元纳米光栅的QDLED增强的发射,以更高的倍率对细胞成像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号