首页> 外文期刊>Nanotechnology >Influence of surface stresses on indentation response
【24h】

Influence of surface stresses on indentation response

机译:表面应力对压痕响应的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Surface stresses lead to an effective change in the elastic constants of thin films and at surfaces. The development of modern scanning probe techniques like contact resonance atomic force microscopy empowers the experimenter to measure at scales where these effects become increasingly relevant. In this paper we employ a computational multiscale approach where we compare density functional theory (DFT) and molecular dynamics simulations as tools to calculate the thin-film/surface elastic behavior for silicon and strontiumtitanate. From the surface elastic constants gained by DFT calculations we develop a continuum finite-element multilayer model to study the impact of surface stresses on indentation experiments. In general the stress field of an indenter and thus the impact of surface stresses on the indentation modulus depends on its contact radius and on its particular shape. We propose an analytical model that describes the behavior of the indentation modulus as a function of the contact radius. We show that this model fits well to simulation results gained for a spherical and a flat punch indenter. Our results demonstrate a surface-stress-induced reduction of the indentation modulus of about 5% for strontiumtitanate and 6% for silicon for a contact radius of r(c) = 5 nm, irrespective of the indenter shape.
机译:表面应力导致薄膜和表面弹性常数的有效变化。诸如接触共振原子力显微镜等现代扫描探针技术的发展使实验人员能够在这些效应变得越来越重要的规模上进行测量。在本文中,我们采用了一种计算的多尺度方法,在该方法中,我们比较了密度泛函理论(DFT)和分子动力学模拟作为工具来计算硅和钛酸锶的薄膜/表面弹性行为。通过DFT计算获得的表面弹性常数,我们开发了一个连续的有限元多层模型来研究表面应力对压痕实验的影响。通常,压头的应力场以及因此表面应力对压痕模量的影响取决于其接触半径和其特定形状。我们提出了一个分析模型,该模型描述了压痕模量随接触半径变化的行为。我们表明,该模型非常适合球形和扁平冲头的模拟结果。我们的结果表明,对于接触半径为r(c)= 5 nm的钛酸锶,压痕模量的表面应力引起的减小约为5%,对于硅,压痕模量的减小约为6%,与压头的形状无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号