首页> 外文期刊>Nanotechnology >Surface trap mediated electronic transport in biofunctionalized silicon nanowires
【24h】

Surface trap mediated electronic transport in biofunctionalized silicon nanowires

机译:生物功能化的硅纳米线中表面陷阱介导的电子传输

获取原文
获取原文并翻译 | 示例
           

摘要

Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.
机译:硅纳米线(SiNWs)通过自上而下的方法制造,然后用生物探针进行功能化,用于对乳腺肿瘤标记物进行基于电的传感。 SiNW在裸露的条件下表现出类似忆阻性的行为,在存在生物标志物的情况下,其磁滞特性得到了改善,更重要的是,它还具有电压记忆成分,即电压间隙。由于电压间隙对导线附近电荷的高分辨率依赖性,因此电压间隙被证明是一种新颖而强大的检测参数。以前从未研究和采用这种独特的传感方法。在这里,我们提出了肖特基势垒SiNW生物传感器中表面电子传输的物理模型,旨在再现和理解基于电压间隙的行为。所实现的模型很好地描述了设备的实验I-V特性。通过显示此参数的减少,它也响应电压间隙的变化与抗原浓度的变化有关,该参数的减少是响应于在真实人类样品中以飞摩尔分辨率检测到的分子浓度的增加。实验和模拟都强调了纳米线表面态的动态重组以及来自生物物种的外部电荷在电压间隙的出现和改变中的主要作用。最后,由于其紧凑性以及与纳米设备物理特性的严格关联,该模型可用于描述和预测其他纳米结构设备的I-V特性,这不同于基于抗体的传感以及电子应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号