首页> 外文期刊>Nanotechnology >Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots
【24h】

Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots

机译:Mn,Cu掺杂的In2S3单分散量子点的激发相关多色发射和光电导性

获取原文
获取原文并翻译 | 示例
           

摘要

Indium sulphide (In2S3) quantum dots (QDs) of average size 6 +/- 2 nm and hexagonal nanoplatelets of average size 37 +/- 4 nm have been synthesized from indium myristate and indium diethyl dithiocarbamate precursors respectively. The absorbance and emission band was tuned with variation of nanocrytal size from very small in the strong confinement regime to very large in the weak confinement regime. The blue emission and its shifting with size has been explained with the donor-acceptor recombination process. The 3d element doping (Mn2+ and Cu2+) is found to be effective for formation of new emission bands at higher wavelengths. The characteristic peaks of Mn2+ and Cu2+ and the modification of In3+ peaks in the x-ray photoelectric spectrum (XPS) confirm the incorporation of Mn2+ and Cu2+ into the In2S3 matrix. The simulation of the electron paramagnetic resonance signal indicates the coexistence of isotropic and axial symmetry for In and S vacancies. Moreover, the majority of Mn2+ ions and sulphur vacancies (VS) reside on the surface of nanocrystals. The quantum confinement effect leads to an enhancement of band gap up to 3.65 eV in QDs. The formation of Mn 3d levels between conduction band edge and shallow donor states is evidenced from a systematic variation of emission spectra with the excitation wavelength. In2S3 QDs have been established as efficient sensitizers to Mn and Cu emission centers. Fast and slow components of photoluminescence (PL) decay dynamics in Mn and Cu doped QDs are interpreted in terms of surface and bulk recombination processes. Fast and stable photodetctors with high photocurrent gain are fabricated with Mn and Cu doped QDs and are found to be faster than pure In2S3. The fastest response time in Cu doped QDs is an indication of the most suitable system for photodetector devices.
机译:分别由肉豆蔻酸铟和二乙基二硫代氨基甲酸铟前驱体合成了平均尺寸为6 +/- 2 nm的硫化铟(In2S3)量子点(QD)和平均尺寸为37 +/- 4 nm的六角形纳米片。吸光度和发射带随纳米晶体尺寸的变化而变化,从在强约束条件下的很小到在弱约束条件下的很大。蓝光发射及其随尺寸的变化已通过施主-受主复合过程进行了解释。发现3d元素掺杂(Mn2 +和Cu2 +)对于在更高波长处形成新的发射带有效。 X射线光电光谱(XPS)中Mn2 +和Cu2 +的特征峰以及In3 +峰的修饰证实了Mn2 +和Cu2 +掺入In2S3基体中。电子顺磁共振信号的仿真表明In和S空位的各向同性和轴向对称性共存。此外,大多数Mn2 +离子和硫空位(VS)驻留在纳米晶体的表面上。量子限制效应导致量子点中的带隙提高到3.65 eV。从发射光谱随激发波长的系统变化,可以证明在导带边缘和浅施主态之间形成了Mn 3d能级。 In2S3量子点已被确立为对锰和铜发射中心的有效敏化剂。 Mn和Cu掺杂QD中光致发光(PL)衰减动力学的快速和慢速成分是根据表面和整体复合过程来解释的。用锰和铜掺杂的量子点制造出具有高光电流增益的快速,稳定的光电二极管,发现其比纯In2S3更快。铜掺杂量子点中最快的响应时间表明最适合用于光电探测器设备的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号