首页> 外文期刊>RSC Advances >Fabrication of TiO2 nanosheets via Ti3+ doping and Ag3PO4 QD sensitization for highly efficient visible-light photocatalysis
【24h】

Fabrication of TiO2 nanosheets via Ti3+ doping and Ag3PO4 QD sensitization for highly efficient visible-light photocatalysis

机译:通过Ti3 +掺杂和Ag3PO4 QD敏化制备TiO2纳米片,实现高效可见光光催化

获取原文
获取原文并翻译 | 示例
           

摘要

Visible-light photocatalysis has attracted much attention in environmental remediation and sustainable energy utilization, however, it is still a great challenge to develop highly efficient and stable visible-light photocatalyst. Herein, we developed Ag3PO4 quantum dots (QDs) sensitized and Ti3+-doped TiO2 nanosheets (NS) via a solvothermal/in situ precipitation method. The TiO2/Ag3PO4 ratio in the composite was tuned from 3 : 1 to 1 : 4 to optimize the dispersion and size of Ag3PO4 QDs, and the best dispersed Ag3PO4 QDs with the smallest size (ca. 2 nm) was obtained for TA1 : 3. The characterizations confirm that abundant Ti3+ defects are introduced into TiO2, and the interaction between Ag3PO4 QDs and TiO2 NS is in the form of Ag-O-Ti bonds, which benefit the visible-light absorption and accelerates the charge separation. Moreover, the well-matched band structures drive the electrons to Ag3PO4 and holes to TiO2 {001} faces, respectively. Therefore, TA1 : 3 shows a 1.7-fold, 1.4-fold and 5-fold higher activity than bulk Ag3PO4 in MO, phenol photodegradation, and PEC water splitting, respectively. In addition, the sample shows relatively high photostability. Thus, we believe that the rational design of heterostructures based on the matched band and abundant defects can fabricate the highly reactive photocatalysts.
机译:可见光光催化在环境修复和可持续能源利用中引起了广泛关注,但是,开发高效,稳定的可见光光催化剂仍然是一个巨大的挑战。在本文中,我们通过溶剂热/原位沉淀法开发了敏化和掺杂Ti3 +的TiO2纳米片(NS)的Ag3PO4量子点(QDs)。复合材料中的TiO2 / Ag3PO4比例从3:1调整为1:4以优化Ag3PO4 QD的分散度和尺寸,对于TA1:3获得了最小尺寸(约2 nm)的最佳分散的Ag3PO4 QD。表征表明,大量的Ti3 +缺陷被引入到TiO2中,Ag3PO4量子点与TiO2 NS之间的相互作用以Ag-O-Ti键的形式存在,这有利于可见光吸收并加速了电荷分离。此外,匹配良好的能带结构分别将电子驱动到Ag3PO4,将空穴驱动到TiO2 {001}面。因此,TA1:3在MO,苯酚光降解和PEC水分解中的活性分别比本体Ag3PO4高1.7倍,1.4倍和5倍。另外,样品显示出较高的光稳定性。因此,我们认为基于匹配带和大量缺陷的异质结构的合理设计可以制造高反应性的光催化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号